首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了进一步提高泡沫夹层复合材料的承载能力和综合性能,实现其在轨道交通及汽车等工业领域的应用,开展了玻璃纤维立体织物增强环氧树脂泡沫(GF-Fabric/EP)复合材料的制备及其力学性能的研究。制备GF-Fabric/EP复合材料及其夹层结构,探索了GF-Fabric/EP复合材料及其夹层结构的失效行为,以揭示立体织物的增强机制。结果表明:立体织物的引入可显著改善GF-Fabric/EP复合材料的强度、刚度及破坏应变;但在不同承载条件下,各纱线发挥承载作用和效果不同。面板、芯材各自的性能、尺寸及面/芯界面性能均是影响GF-Fabric/EP夹层复合材料力学性能及失效特征的重要因素。以三点加载下的弯曲性能为例,针对不同的GF-Fabric/EP夹层复合材料,需调整跨厚比和试样尺寸并获得理想的失效特征,方可对其弯曲性能或层间剪切性能进行有效、合理的评价。  相似文献   

2.
The effect of fiber sizing and surface texture on the strength and energy absorbing capacity of fiber reinforced composites has been evaluated at two length scales using the macromechanical quasi-static punch shear test and the micromechanical microdroplet test methods. E-Glass/SC-79 epoxy composite laminates with four different fiber sizing formulations with various degrees of chemical bonding and surface texture have been investigated. The failure modes during perforation and different energy dissipating damage mechanisms were identified and quantified. The punch shear strength and the total energy absorption per unit volume of composite with hybrid sizing have increased by 48% and 100% over the incompatible sizing. These results showed linear correlations with the interphase properties reported earlier by the authors (Gao et al., 2011) and provided a methodology for developing new sizing by tailoring chemical bonding and the fiber surface texture at the fiber–matrix interphase for improving both strength and energy absorption of composites.  相似文献   

3.
为研究纳米改性对复合材料力学性能的影响,以纳米黏土改性环氧树脂与固化剂混合胶液为基体,以三维正交机织玻璃纤维织物为增强体,利用真空辅助树脂传递模压工艺(Vacuum assisted resin transfer molding,VARTM),制备纳米增韧三维正交玻璃纤维机织物增强环氧树脂复合材料。分别测试不同质量分数(1wt%、2wt%、3wt%、4wt%)纳米黏土改性复合材料沿0°和90°方向的弯曲和拉伸性能。结果表明:当纳米黏土质量分数为1wt%时,复合材料弯曲强度最大,沿0°和90°方向的弯曲强度分别增大了约7.21%和13.71%,弯曲模量分别增大了约5.69%和16.64%。当纳米黏土质量分数为3wt%时,复合材料拉伸强度最大,沿0°和90°方向的拉伸强度分别增大了约24.96%和27.93%,拉伸模量分别增加了约21.35%和13.26%。这是由于纳米黏土呈纳米尺度以片层状分散于环氧树脂中,增加了两相间的接触面积,提高纤维/树脂界面的结合力,进而增强了复合材料的力学性能。   相似文献   

4.
In this work, the effect of glass fiber hybridization with the randomly oriented natural fibers has been analyzed. The banana (B), sisal (S) fibers were chopped and woven E-glass (G) synthetic fibers were reinforced with epoxy matrix. Nine different kinds of laminates were prepared in the following stacking sequence of B, S, BS, G/B/G, G/S/G, G/BS/G, G/B/G/B/G, G/S/G/S/G and G/BS/G/BS/G. Mechanical properties like tensile strength, flexural strength and impact strength were evaluated and compared. Interfacial analysis was also carried out with the help of Scanning Electron Microscope (SEM) to study the micro structural behavior of the tested specimen. It was observed that the addition of two and three layer of glass fiber can improve the tensile strength by a factor of 2.34 and 4.13 respectively. The flexural properties were enhanced on banana–sisal fiber with two layers of glass fibers rather than three layers and the laminate with sisal and three glass ply offers better impact strength.  相似文献   

5.
Electromagnetic wave reflections from glass fiber reinforced epoxy matrix composites with 0°/90° and ±45° fiber oriented plain-woven glass fabric (PW-GFRP-0/90, PW-GFRP-±45) at incident angles of 30°, 40° and 50° were measured in the frequency range 50-75 GHz using a free-space reflection measurement system. The complex dielectric constants of both composites were calculated using a simple transmission line theory. The complex dielectric constants of PW-GFRP-0/90 and PW-GFRP-±45 are similar and were measured to be ε′ = 4.61 ± 0.01 and ε″ = 0.16 ± 0.002, respectively.The damage stored in PW-GFRP-0/90 and PW-GFRP-±45 was also evaluated by dielectric constant changes using the same system at an incident angle of 30°. For both composites, ε′ decreased with increasing applied stress and damage parameter. The dielectric constant change is effective for detecting the damage stored in composites and can be used to quantitatively evaluate the damage.  相似文献   

6.
对以平纹织物为增强体的混杂纤维复合材料(HFRP)的刚度和强度进行研究。设计热压工艺并制备7组具有不同混杂比的玄武岩纤维-碳纤维(玄-碳)混杂增强环氧树脂基复合材料试样进行拉伸试验。基于平纹织物的结构特征,对传统混合定律加以修正,提出以平纹织物为增强体的HFRP刚度估算模型。基于HFRP层合板的破坏机制,提出材料仅发生一次破坏的临界混杂比,并分成三个混杂比范围给出强度估算模型。最终以体现分散度的混杂效应系数对估算结果加以修正。结果表明:计算值与试验值近似,预估模型计算所得临界混杂比与试样拉伸试验时的应力-应变曲线分析结果相符,模型可为今后的实际应用提供理论依据。本文提出的预估方法可以反应混杂比和分散度对平纹织物为增强体的HFRP强度和刚度的影响,扩展了混合定律的应用范围。  相似文献   

7.
为研究玻璃纤维(GF)/环氧树脂复合材料湿热老化机制, 首先, 利用称重法、动态热机械分析仪(DMA)、SEM和矢量网络介电分析仪研究了湿热老化对GF/环氧树脂608(EP608)复合材料性能的影响;然后, 分析了复合材料的吸湿率、力学性能、介电性能与老化时间的关系, 并对其老化机制进行了探讨。结果表明:随老化时间延长, GF/EP608复合材料的力学性能和介电性能均有不同程度的下降;湿热老化对GF/EP608复合材料吸湿率的影响符合Fickian扩散定律;树脂基体的塑化、水解和基体-纤维界面的破坏是造成GF/EP608复合材料力学性能和介电性能下降的主要因素。所得结论可为GF增强环氧树脂基复合材料的应用提供科学依据。   相似文献   

8.
利用激光对玻璃纤维、玄武岩纤维和碳纤维进行表面改性后,以环氧树脂为基体,分别制备三种纤维增强环氧树脂复合材料。利用SEM和万能试验机对表面改性前后的碳纤维形态、力学性能及三种纤维/环氧树脂复合材料的力学性能和断面形貌进行表征,研究了纤维激光表面改性对三种纤维及其增强环氧树脂复合材料力学性能的影响。结果表明:激光表面改性对碳纤维/环氧树脂复合材料的力学性能提升最高,其拉伸强度最大提高了77.06%,冲击强度最大提高了31.25%,玄武岩纤维/环氧树脂复合材料的力学性能提升次之,而玻璃纤维/环氧树脂复合材料的力学性能有所下降。因此,激光进行表面改性适用于碳纤维和玄武岩纤维。  相似文献   

9.
采用MTS-810材料试验机、Zwick-HTM5020高速拉伸试验机及分离式Hopkinson拉杆(SHTB)实验装置,并结合数字图像相关性(Digital image correlation,DIC)分析方法,对E玻璃纤维增强环氧树脂基复合材料棒材在10-3~2 400 s-1应变率范围内的轴向拉伸力学性能进行了较系统的实验研究,获得了不同应变率下材料的应力-应变曲线,揭示了应变率对材料的拉伸强度和断裂应变的影响规律。通过显微分析拉伸试样的断口形貌,揭示了试样的断裂机制及对应变率的依赖性。实验结果表明:E玻璃纤维增强环氧树脂基复合材料的力学性能具有强烈的应变率效应,归一化拉伸强度随着应变率对数线性增加,而归一化断裂应变则随着对数应变率线性减小;断口显微分析显示:E玻璃纤维增强环氧树脂基复合材料的轴向拉伸断裂模式依赖于应变率,低应变率加载下试样发生沿45°方向的剪切断裂,随着应变率增大,试样断裂模式逐渐过渡到沿轴向的拉伸断裂,特别是在高应变加载下,观察到大量的玻璃纤维丝被拉断,同时环氧树脂基体也发生严重的碎裂现象,这反映了基体材料与玻璃纤维之间相互约束作用在增强。  相似文献   

10.
采用浇铸成型工艺制备含0.5wt%、长度分别为1 mm、3 mm、5 mm的短切玻璃纤维/环氧树脂(GF/EP)复合材料,研究含活性酚羟基和不含酚羟基的两种聚酰亚胺(PI)处理GF表面对纤维束拉伸强度及GF/EP复合材料力学性能的影响,并进一步研究PI处理GF对复合材料热性能的影响。研究结果表明,经过PI处理的GF,集束性和拉伸强度得到提高。含活性酚羟基聚酰亚胺(PI1)处理的GF拉伸强度由原丝束的517 MPa提高到1 032 MPa,不含酚羟基聚酰亚胺(PI2)处理的GF提高到986 MPa。当PI1处理的GF长度为3 mm时,GF/EP复合材料的力学性能最好,拉伸强度比未处理的提高23.62%,拉伸模量提高34.03%,弯曲强度提高28.74%,断裂韧性提高13.04%;PI2处理的GF,GF/EP复合材料拉伸强度提高15.87%,拉伸模量提高23.70%,弯曲强度提高14.11%,断裂韧性提高4.05%。此外,PI处理GF对GF/EP复合材料热性能也有一定程度的提高。  相似文献   

11.
In the present paper, carbon nanotubes (CNTs) were chemically grafted onto surfaces of the amino silane treated glass fabric by a novel chemical route for the first time to create 3D network on the glass fibers. The chemical bonding process was confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy. The glass fabric/CNT/epoxy multi-scale composite laminates were fabricated with the CNT grafted fabrics using vacuum assisted resin infusion molding. Tensile tests were conducted on fabricated multi-scale composites, indicating the grafting CNTs on glass fabric resulted a decrease (11%) in ultimate tensile strength while toughness of the multi-scale composite laminates were increased up to 57%. Flexural tests revealed that the multi-scale composite laminates prepared with CNT grafted glass fabric represent recovering after first load fall. The interfacial reinforcing mechanisms were discussed based on fracture morphologies of the multi-scale composites.  相似文献   

12.
采用炸药柱近似模拟平面波发生器 ,利用传感器对 3种玻纤复合材料的抗爆震性能进行了研究。试验结果表明 ,玻纤复合材料对爆炸冲击波衰减作用的大小与基体材料的阻尼特性有关。基体材料的阻尼性能越好 ,复合材料对冲击波的衰减作用也就越好。  相似文献   

13.
通过开展在不同龄期、不同环境湿度下玻璃纤维增强水泥(GRC)试件的抗折强度、抗压强度试验和基体pH值测定,研究了环境湿度对掺加粉煤灰和硅灰等活性矿物掺合料的GRC试件力学性能的影响。结果表明:环境湿度对GRC试件的抗折强度有重要影响,相对湿度越大,随着龄期增加, GRC试件抗折强度降低越严重;在温度60℃、相对湿度95%条件下,经过56 d龄期后,掺有40%粉煤灰和10%硅灰的GRC试件抗折强度比未掺加粉煤灰和硅灰的GRC试件的抗折强度提高48.5%、抗压强度提高23.6%, GRC基体pH值降低6%。在相同的湿度条件下,掺有粉煤灰和硅灰试件的pH值在各个龄期都低于普通硅酸盐水泥试件,说明粉煤灰和硅灰的掺入能降低水泥水化液相的碱度,进而延缓了纤维受侵蚀的速度,显著改善了GRC试件的力学及耐久性能。通过对试验结果进行分析,利用MATLAB软件建立了GRC试件抗折强度和抗压强度与水泥砂浆基体pH值及时间的关系式。   相似文献   

14.
Carbon and glass tows were fabricated into Interlock, Full-Cardigan, Milano and Rib fabric stitches by weft-knitting. The fatigue strength of composites made from these fabrics and epoxy resin was studied in terms of the relationship of the knitting stitch and the applied direction, the stress number of the fatigue distribution, hysteresis heating, lost strength, and fatigue damage propagation rate. In addition, by using the above composites, we compared the fatigue strength with plain-weave fabric composites.

The weft-knit composites loaded by fixed cantilever bending showed that the wale direction had a greater stiffness than the course direction. The Interlock fabric composite provides the highest fatigue resistance in these weft-knit stitches. However, the fatigue strength of a plain-weave fabric composite is higher than that of the weft-knit fabric composites. In a fatigue test, the hysteresis heating is below 60°C. On the other hand, the fatigue resistance ability can be increased about 40–60% by a sandwich lamination method.  相似文献   


15.
王春齐  江大志  肖加余 《功能材料》2012,43(11):1438-1442
先采用真空袋压法制备含CaCO3/环氧树脂表面功能层的玻璃纤维增强环氧树脂复合材料,再通过化学刻蚀与表面修饰,在玻璃纤维增强环氧树脂复合材料上制备出超疏水表面。采用扫描电镜和动/静态接触角分析仪,表征表面的形貌和疏水性,结果表明,在复合材料表面构建了具有微-纳米尺度二元粗糙结构;采用1%(质量分数)的硬脂酸修饰后,其表面与水的接触角最高达160.03°;制备的超疏水表面结构在室温环境下具有长期的稳定性。  相似文献   

16.
《Composites Part A》2001,32(2):197-206
An investigation has been made on effects of fibre surface treatments on transverse mechanical behaviour of unidirectional glass/epoxy composites. Model composite plates were processed by filament winding using glass fibres coated with different sizings changing by their epoxy functionality and their reactivity towards the matrix.In the first part of the study, transverse tension and microindentation characterisations were performed in order to correlate the ultimate behaviour of the composite with interfacial properties. Experiments revealed that the most reactive sizings promote the highest interfacial strength and also increase ultimate properties of laminates in transverse tension. This feature was attributed to the high crosslink density of the polymer network in interfacial areas.In the second part, finite element calculations were used to evaluate local strain and stress concentration in a composite submitted to transverse tension conditions. The general trend for the evolution of composite failure strain as a function of interfacial strength has been established. The modelling showed that a transition of the composite failure mode occurs at a global strain of 1.15%, from an adhesive rupture at the fibre/matrix interface to a cohesive rupture in the matrix. In the domain of adhesive rupture, the value of the composite failure strain appeared to be directly governed by the interfacial strength.Therefore, improving interfacial strength by use of fibre sizings with high epoxy functionality could constitute an interesting way to reduce transverse brittleness of composite structures.  相似文献   

17.
This paper presents the thermal, mechanical and fracture behaviour of fly-ash based geopolymer composites reinforced with cotton fabric (0–8.3 wt.%). Results revealed that fly-ash based geopolymer can prevent the degradation of cotton fabric at elevated temperatures. The effect of cotton fabric orientation (i.e., horizontal or vertical) to the applied load on flexural strength, compressive strength, hardness and fracture toughness of geopolymer composites is also investigated. The results showed that when the fabrics are aligned in horizontal orientation with respect to the applied load, higher load and greater resistance to the deformation were achieved when compared to their vertically-aligned counterparts.  相似文献   

18.
Electromagnetic wave transmittances of plain woven fabric glass fiber reinforced epoxy matrix composite (PW-GFRP) and eight-harness-stain fabric glass fiber reinforced polyimide matrix composite (8H-GFRP) with 1.0 mm thickness were measured in a terahertz (THz) frequency range. The transmittance values for both composites are nearly zero at a frequency of 1.0 THz. The real parts of the complex dielectric constant, ε′(ω) are 4.45 and 3.87 for PW-GFRP and 8H-GFRP, respectively, in the frequency range from 0.2 to 1.0 THz, and they are almost frequency independent. Conversely, the imaginary parts of the dielectric constant, ε′′(ω) for both composites linearly increases with increase of the frequency from 0.13 to 0.37 for PW-GFRP, and from 0.12 to 0.33 for 8H-GFRP.  相似文献   

19.
Composites consisting of fique fibers (Colombian fibers) and unsaturated polyester (UP) matrix have been investigated. Fique fiber bundles were subjected to alkalization and/or treated with different chemical agents such as maleic anhydride, acrylic acid and a silane to provide increased compatibility between fiber and resin. The mechanical behavior of the composite materials was analyzed by flexural tests. Maximum mechanical properties were observed for composites with fibers subjected to alkalization and also when it was applied as previous process for the other treatments. Aspects of composite materials such as fiber bundle length, fiber content as well as two ways of preparing the material, lamination and BMC, have been evaluated. The influence of surface treatment of fiber on curing of the polyester resin was analyzed by differential scanning calorimetry (DSC). Dynamic mechanical properties were also evaluated to establish the influence of the interfacial interactions on the mechanical behavior of the laminates.  相似文献   

20.
The aim of the present study is to investigate and compare the mechanical and thermal properties of raw jute and banana fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with banana fiber. The jute and banana fibers were prepared with various weight ratios (100/0, 75/25, 50/50, 25/75 and 0/100) and then incorporated into the epoxy matrix by moulding technique to form composites. The tensile, flexural, impact, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that addition of banana fiber in jute/epoxy composites of up to 50% by weight results in increasing the mechanical and thermal properties and decreasing the moisture absorption property. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号