首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new mathematical model, based on the observation of 13C-NMR spectra of two principal metabolites (glutamate and aspartate), was constructed to determine the citric acid cycle flux in the case of high aspartate transaminase activity leading to the formation of large amounts of labeled aspartate and glutamate. In this model, the labeling of glutamate and aspartate carbons by chemical and isotopic exchange with the citric acid cycle are considered to be interdependent. With [U-13C]Glc or [1,2-(13)C]acetate as a substrate, all glutamate and aspartate carbons can be labeled. The isotopic transformations of 32 glutamate isotopomers into 16 aspartate isotopomers or vice versa were studied using matrix operations; the results were compiled in two matrices. We showed how the flux constants of the citric acid cycle and the 13C-enrichment of acetyl-CoA can be deduced from 13C-NMR spectra of glutamate and/or aspartate. The citric acid cycle flux in beating Wistar rat hearts, aerobically perfused with [U-13C]glucose in the absence of insulin, was investigated by 13C-NMR spectroscopy. Surprisingly, aspartate instead of glutamate was found to be the most abundantly-labeled metabolite, indicating that aspartate transaminase (which catalyses the reversible reaction: (glutamate + oxaloacetate <--> 2-oxoglutarate + aspartate) is highly active in the absence of insulin. The amount of aspartate was about two times larger than glutamate. The quantities of glutamate (G0) or aspartate (A0) were approximately the same for all hearts and remained constant during perfusion: G0 = (0.74 +/- 0.03) micromol/g; A0 = (1.49 +/- 0.05) micromol/g. The flux constants, i.e., the fraction of glutamate and aspartate in exchange with the citric acid cycle, were about 1.45 min(-1) and 0.72 min(-1), respectively; the flux of this cycle is about (1.07 +/- 0.02) micromol min(-1) g(-1). Excellent agreement between the computed and experimental data was obtained, showing that: i) in the absence of insulin, only 41% of acetyl-CoA is formed from glucose while the rest is derived from endogenous substrates; and ii) the exchange between aspartate and oxaloacetate or between glutamate and 2-oxoglutarate is fast in comparison with the biological transformation of intermediate compounds by the citric acid cycle.  相似文献   

2.
A new 13C NMR technique for measuring substrate utilization by the citric acid cycle based on an analysis of succinate 13C isotopomers is presented. The relative contribution of up to three different labeling patterns in acetyl-CoA entering the citric acid cycle may be determined under non-steady-state conditions. We present experimental data from perfused rat hearts subjected to a brief period of ischemia, where both succinate and glutamate resonances were observed in the 13C spectrum. The contributions of labeled exogenous acetate and lactate and unlabeled sources to the acetyl-CoA pool were compared using this succinate analysis and a previously published glutamate analysis [Malloy et al. (1990) Biochemistry 29, 6756-6761], and the two methods give identical results. This indicates that the succinate and glutamate isotopomers originated from a common alpha-ketoglutarate pool, verifying that glutamate is in isotopomeric equilibrium with alpha-ketoglutarate under these conditions.  相似文献   

3.
In cerebral cortical neurons, synthesis of the tricarboxylic acid (TCA) cycle-derived amino acids, glutamate and aspartate as well as the neurotransmitter of these neurons, gamma-aminobutyrate (GABA), was studied incubating the cells in media containing 0.5 mM [U-13C]glucose in the absence or presence of glutamine (0.5 mM). Lyophilized cell extracts were analyzed by 13C nuclear magnetic resonance (NMR) spectroscopy and HPLC. The present findings were compared to results previously obtained using 1.0 mM [U-13C]lactate as the labeled substrate for the neurons. Regardless of the amino acids studied, incubation periods of 1 and 4 h resulted in identical amounts of 13C incorporated. Furthermore, the metabolism of lactate was studied under analogous conditions in cultured cerebral cortical astrocytes. The incorporation of 13C from lactate into glutamate was much lower in the astrocytes than in the neurons. In cerebral cortical neurons the total amount of 13C in GABA, glutamate and aspartate was independent of the labeled substrate. The enrichment in glutamate and aspartate was, however, higher in neurons incubated with lactate. Thus, lactate appears to be equivalent to glucose with regard to its access to the TCA cycle and subsequent labeling of glutamate, aspartate and GABA. It should be noted, however, that incubation with lactate in place of glucose led to lower cellular contents of glutamate and aspartate. The presence of glutamine affected the metabolism of glucose and lactate differently, suggesting that the metabolism of these substrates may be compartmentalized.  相似文献   

4.
The metabolic fate of glutamate in astrocytes has been controversial since several studies reported > 80% of glutamate was metabolized to glutamine; however, other studies have shown that half of the glutamate was metabolized via the tricarboxylic acid (TCA) cycle and half converted to glutamine. Studies were initiated to determine the metabolic fate of increasing concentrations of [U-13C] glutamate in primary cultures of cerebral cortical astrocytes from rat brain. When astrocytes from rat brain were incubated with 0.1 mM [U-13C] glutamate 85% of the 13C metabolized was converted to glutamine. The formation of [1,2,3-13C3] glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. When astrocytes were incubated with 0.2-0.5 mM glutamate, 13C from glutamate was also incorporated into intracellular aspartate and into lactate that was released into the media. The amount of [13C] lactate was essentially unchanged within the range of 0.2-0.5 mM glutamate, whereas the amount of [13C] aspartate continued to increase in parallel with the increase in glutamate concentration. The amount of glutamate metabolized via the TCA cycle progressively increased from 15.3 to 42.7% as the extracellular glutamate concentration increased from 0.1 to 0.5 mM, suggesting that the concentration of glutamate is a major factor determining the metabolic fate of glutamate in astrocytes. Previous studies using glutamate concentrations from 0.01 to 0.5 mM and astrocytes from both rat and mouse brain are consistent with these findings.  相似文献   

5.
Ischemia and reperfusion may damage myocytes and endothelium in jeopardized hearts. This study tested whether (1) endothelial dysfunction (reduced nitric oxide release) exists despite good contractile performance and (2) supplementation of blood cardioplegic solution with nitric oxide precursor L-arginine augments nitric oxide and restores endothelial function. Among 30 Yorkshire-Duroc pigs, 6 received standard glutamate/aspartate blood cardioplegic solution without global ischemia. Twenty-four underwent 20 minutes of 37 degrees C global ischemia. Six received normal blood reperfusion. In 18, the aortic clamp remained in place 30 more minutes and all received 3 infusions of blood cardioplegic solution. In 6, the blood cardioplegic solution was unaltered; in 6, the blood cardioplegic solution contained L-arginine (a nitric oxide precursor) at 2 mmol/L; in 6, the blood cardioplegic solution contained the nitric oxide synthase inhibitor L-nitro arginine methyl ester (L-NAME) at 1 mmol/L. Complete contractile and endothelial recovery occurred without ischemia. In jeopardized hearts, complete systolic recovery followed infusion of blood cardioplegic solution and of blood cardioplegic solution plus L-arginine. Conversely, contractility recovered approximately 40% after infusion of normal blood and blood cardioplegic solution plus L-NAME. Postischemic nitric oxide production fell 50% in the groups that received blood cardioplegic solution and blood cardioplegic solution plus L-NAME but was increased in the group that received blood cardioplegic solution L-arginine. In vivo endothelium-dependent vasodilator responses to acetylcholine recovered 75% +/- 5% of baseline in the blood cardioplegic solution plus L-arginine group, but less than 20% of baseline in other jeopardized hearts. Endothelium-independent smooth muscle responses to sodium nitroprusside were relatively unaltered. Myeloperoxidase activity (neutrophil accumulation) was similar in the blood cardioplegic solution (without ischemia) and blood cardioplegic solution plus L-arginine groups (0.01 +/- 0.002 vs 0.013 +/- 0.003 microgram/gm tissue). Myeloperoxidase activity was raised substantially to 0.033 +/- 0.002 microgram/gm after exposure to normal blood and to 0.025 +/- 0.003 microgram/gm after infusion of blood cardioplegic solution and was highest at 0.053 +/- 0.01 microgram/gm with exposure to blood cardioplegic solution plus L-NAME in jeopardized hearts. The discrepancy between contractile recovery and endothelial dysfunction in jeopardized muscle can be reversed by adding L-arginine to blood cardioplegic solution.  相似文献   

6.
BACKGROUND: Hypothermic hyperkalemic cardioplegic solutions are currently used for donor heart preservation. Hyperkalemia-induced depolarization of the resting membrane potential (Em) may predispose the heart to Na+ and Ca2+ loading via voltage-dependent "window currents," thereby exacerbating injury and limiting the safe storage duration. Alternatively, maintaining the resting Em with a polarizing solution may reduce ionic movements and improve postischemic recovery; we investigated this concept with the reversible sodium channel blocker tetrodotoxin (TTX) to determine (1) whether polarized arrest was more efficacious than depolarized arrest during hypothermic long-term myocardial preservation and (2) whether TTX induces and maintains polarized arrest. METHODS AND RESULTS: The isolated crystalloid-perfused working rat heart preparation was used in this study. Preliminary studies determined an optimal TTX concentration of 22 micromol/L and an optimal storage temperature of 7.5 degrees C. To compare depolarized and polarized arrest, hearts were arrested with either Krebs-Henseleit (KH) buffer (control), KH buffer containing 16 mmol/L K+, or KH buffer containing 22 micromol/L TTX and then stored at 7.5 degrees C for 5 hours. Postischemic recovery of aortic flow was 13+/-4%, 38+/-2%, and 48+/-3%* (*P<.05 versus control and 16 mmol/L K+), respectively. When conventional 3 mol/L KCl-filled intracellular microelectrodes were used, Em gradually depolarized during control unprotected ischemia to approximately -55 mV before reperfusion, whereas arrest with 16 mmol/L K+ caused rapid depolarization to approximately -50 mV, where it remained throughout the 5-hour storage period. In contrast, in 22 micromol/L TTX-arrested hearts, Em remained more polarized, at approximately -70 mV, for the entire ischemic period. CONCLUSIONS: Blockade of cardiac sodium channels by TTX during ischemia maintained polarized arrest, which was more protective than depolarized arrest, possibly because of reduced ionic imbalance.  相似文献   

7.
Anaplerotic pyruvate carboxylation was examined in hearts perfused with physiological concentrations of glucose, [U-13C3]lactate, and [U-13C3]pyruvate. Also, a fatty acid, [1-13C]octanoate, or ketone bodies were added at concentrations providing acetyl-CoA at a rate resulting in either low or substantial pyruvate decarboxylation. Relative contributions of pyruvate and fatty acids to citrate synthesis were determined from the 13C labeling pattern of effluent citrate by gas chromatography-mass spectrometry (see companion article, Comte, B., Vincent, G., Bouchard, B., and Des Rosiers, C. (1997) J. Biol. Chem. 272, 26117-26124). Precision on flux measurements of anaplerotic pyruvate carboxylation depended on the mix of substrates supplied to the heart. Anaplerotic fluxes were precisely determined under conditions where acetyl-CoA was predominantly supplied by beta-oxidation, as it occurred with 0.2 or 1 mM octanoate. Then, anaplerotic pyruvate carboxylation provided 3-8% of the OAA moiety of citrate and was modulated by concentrations of lactate and pyruvate in the physiological range. Also, the contribution of pyruvate to citrate formation through carboxylation was equal to or greater than through decarboxylation. Furthermore, 13C labeling data on tissue citric acid cycle intermediates and pyruvate suggest that (i) anaplerosis occurs also at succinate and (ii) cataplerotic malate decarboxylation is low. Rather, the presence of citrate in the effluent perfusate of hearts perfused with physiological concentrations of glucose, lactate, and pyruvate and concentrations of octanoate leading to maximal oxidative rates suggests a cataplerotic citrate efflux from mitochondria to cytosol. Taken altogether, our data raise the possibility of a link between pyruvate carboxylation and mitochondrial citrate efflux. In view of the proposed feedback regulation of glycolysis by cytosolic citrate, such a link would support a role of anaplerosis and cataplerosis in metabolic signal transmission between mitochondria and cytosol in the normoxic heart.  相似文献   

8.
To investigate the effects of halothane, enflurane, and isoflurane on myocardial reperfusion injury after ischemic protection by cardioplegic arrest, isolated perfused rat hearts were arrested by infusion of cold HTK cardioplegic solution containing 0.015 mmol/L Ca2+ and underwent 30 min of ischemia and a subsequent 60 min of reperfusion. Left ventricular (LV) developed pressure and creatine kinase (CK) release were measured as variables of myocardial function and cellular injury, respectively. In the treatment groups (each n = 9), anesthetics were given during the first 30 min of reperfusion in a concentration equivalent to 1.5 minimum alveolar anesthetic concentration of the rat. Nine hearts underwent the protocol without anesthetics (controls). Seven hearts underwent ischemia and reperfusion without cardioplegia and anesthetics. In a second series of experiments, halothane was tested after cardioplegic arrest with a modified HTK solution containing 0.15 mmol/L Ca2+ to investigate the influence of calcium content on protective actions against reperfusion injury by halothane. LV developed pressure recovered to 59%+/-5% of baseline in controls. In the experiments with HTK solution, isoflurane and enflurane further improved functional recovery to 84% of baseline (P < 0.05), whereas halothane-treated hearts showed a functional recovery similar to that of controls. CK release was significantly reduced during early reperfusion by isoflurane and enflurane, but not by halothane. After cardioplegic arrest with the Ca2+-adjusted HTK solution, halothane significantly reduced CK release but did not further improve myocardial function. Isoflurane and enflurane given during the early reperfusion period after ischemic protection by cardioplegia offer additional protection against myocardial reperfusion injury. The protective actions of halothane depended on the calcium content of the cardioplegic solution. IMPLICATIONS: Enflurane and isoflurane administered in concentrations equivalent to 1.5 minimum alveolar anesthetic concentration in rats during early reperfusion offer additional protection against myocardial reperfusion injury even after prior cardioplegic protection. Protective effects of halothane solely against cellular injury were observed only when cardioplegia contained a higher calcium concentration.  相似文献   

9.
Control of oxidative metabolism was studied using 13C NMR spectroscopy to detect rate-limiting steps in 13C labeling of glutamate. 13C NMR spectra were acquired every 1 or 2 min from isolated rabbit hearts perfused with either 2.5 mM [2-13C]acetate or 2.5 mM [2-13C]butyrate with or without KCl arrest. Tricarboxylic acid cycle flux (VTCA) and the exchange rate between alpha-ketoglutarate and glutamate (F1) were determined by least-square fitting of a kinetic model to NMR data. Rates were compared to measured kinetics of the cardiac glutamate-oxaloacetate transaminase (GOT). Despite similar oxygen use, hearts oxidizing butyrate instead of acetate showed delayed incorporation of 13C label into glutamate and lower VTCA, because of the influence of beta-oxidation: butyrate = 7.1 +/- 0.2 mumol/min/g dry wt; acetate = 10.1 +/- 0.2; butyrate + KCl = 1.8 +/- 0.1; acetate + KCl = 3.1 +/- 0.1 (mean +/- SD). F1 ranged from a low of 4.4 +/- 1.0 mumol/min/g (butyrate + KCl) to 9.3 +/- 0.6 (acetate), at least 20-fold slower than GOT flux, and proved to be rate limiting for isotope turnover in the glutamate pool. Therefore, dynamic 13C NMR observations were sensitive not only to TCA cycle flux but also to the interconversion between TCA cycle intermediates and glutamate.  相似文献   

10.
Pyruvate recycling is a well established pathway in the liver, but in the brain, the cellular localization of pyruvate recycling remains controversial and its physiological significance is unknown. In cultured cortical astrocytes, pyruvate formed from [U-13C]glutamate was shown to re-enter the TCA cycle after conversion to acetyl-CoA, as demonstrated by the labelling patterns in aspartate C-2 and C-3, lactate C-2, and glutamate C-4, which provides evidence for pyruvate recycling in astrocytes. This finding is in agreement with previous studies of astrocytic cultures, in which pyruvate recycling has been described from [U-13C]glutamine, in the presence of glutamate, and from [U-13C]aspartate. Pyruvate recycling in brain was studied in fasted rats receiving either an intraperitoneal or a subcutaneous injection of [1,2-13C]acetate followed by decapitation 30 min later. Extracts of cortical tissue were analysed with 13C-NMR spectroscopy and total amounts of amino acids quantified by HPLC. Plasma extracts were analysed with 1H- and 13C-NMR spectroscopy, and showed a significantly larger amount of [1, 2-13C]acetate in the intraperitoneal group compared to the subcutaneous group. Furthermore, a small amount of label was detected in glucose in both groups. In the subcutaneously injected rats, [4-13C]glutamate and [2-13C]GABA were less enriched than plasma glucose, which might have been the precursor. In the intraperitoneally injected rats, however, pyruvate formation from [1, 2-13C]acetate, and re-entry of this pyruvate into the TCA cycle was demonstrated by the presence of greater 13C enrichment in [4-13C]glutamate and [4-13C]glutamine compared to the subcutaneous group, probably resulting from the significantly higher [1, 2-13C]acetate concentration in brain and plasma.  相似文献   

11.
BACKGROUND AND PURPOSE: Increased activation of excitatory amino acid (EAA) receptors is considered a major cause of neuronal damage. Possible sources and mechanisms of ischemia-induced EAA release were investigated pharmacologically with microdialysis probes placed bilaterally in rat striatum. METHODS: Forebrain ischemia was induced by bilateral carotid artery occlusion and controlled hypotension in halothane-anesthetized rats. During 30 minutes of ischemia, microdialysate concentrations of glutamate and aspartate were measured in the presence of a nontransportable blocker of the astrocytic glutamate transporter GLT-1, dihydrokinate (DHK), or an anion channel blocker, 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS), administered separately or together through the dialysis probe. RESULTS: In control striata during ischemia, glutamate and aspartate concentrations increased 44+/-13 (mean+/-SEM) times and 19+/-5 times baseline, respectively, and returned to baseline values on reperfusion. DHK (1 mmol/L in perfusate; n=8) significantly attenuated EAA increases compared with control (glutamate peak, 9. 6+/-1.7 versus control, 15.4+/-2.6 pmol/ microL). EAA levels were similarly decreased by 10 mmol/L DHK. DNDS (1 mmol/L; n=5) also suppressed EAA peak increases (glutamate peak, 5.8+/-1.1 versus control, 10.1+/-0.7 pmol/ microL). At a higher concentration, DNDS (10 mmol/L; n=7) further reduced glutamate and aspartate release and also inhibited ischemia-induced taurine release. Together, 1 mmol/L DHK and 10 mmol/L DNDS (n=5) inhibited 83% of EAA release (glutamate peak, 2.7+/-0.7 versus control, 10.9+/-1.2 pmol/ microL). CONCLUSIONS: These findings support the hypothesis that both cell swelling-induced release of EAAs and reversal of the astrocytic glutamate transporter are contributors to the ischemia-induced increases of extracellular EAAs in the striatum as measured by microdialysis.  相似文献   

12.
BACKGROUND: Cold cardioplegia can induce rapid cooling contracture. The relations of cardioplegia-induced cooling contracture to myocardial temperature or myocyte calcium are unknown. METHODS: Twelve crystalloid-perfused isovolumic rat hearts received three 2-minute cardioplegic infusions (1 mmol/L calcium) at 4 degrees, 20 degrees, and 37 degrees C in random order, each followed by 10 minutes of beating at 37 degrees C. Finally, warm induction of arrest by a 1-minute cardioplegic infusion at 37 degrees C was followed by a 1-minute infusion at 4 degrees C. Indo-1 was used to measure the intracellular Ca2+ concentration in 6 of these hearts. Additional hearts received hypoxic, glucose-free cardioplegia at 4 degrees or 37 degrees C. RESULTS: After 1 minute of cardioplegia at 4 degrees, 20 degrees, and 37 degrees C, left ventricular developed pressure rose rapidly to 54% +/- 3%, 43% +/- 3%, and 18% +/- 1% of its prearrest value, whereas the intracellular Ca2+ concentration reached 166% +/- 23%, 94% +/- 4%, and 37% +/- 10% of its prearrest transient. Coronary flow was 5.7 +/- 0.2, 8.7 +/- 0.3, and 12.6 +/- 0.6 mL/min, respectively. Warm cardioplegia induction at 37 degrees C reduced left ventricular developed pressure and [Ca2+]i during subsequent 4 degrees C cardioplegia by 16% (p = 0.001) and 34% (p = 0.03), respectively. Adenosine triphosphate and phosphocreatine contents were lower after 4 degrees C than after 37 degrees C hypoxic, glucose-free cardioplegia. CONCLUSIONS: Rapid cooling during cardioplegia increases left ventricular pressure, [Ca2+]i and coronary resistance, and is energy consuming. The absence of rapid cooling contracture may be a benefit of warm heart operations and warm induction of cardioplegic arrest.  相似文献   

13.
One proposed contributory mechanism for depressed ventricular performance after hypothermic, hyperkalemic cardioplegic arrest is a reduction in myocyte contractile function caused by alterations in intracellular calcium homeostasis. Because 2,3-butanedione monoxime decreases intracellular calcium transients, this study tested the hypothesis that 2,3-butanedione monoxime supplementation of the hyperkalemic cardioplegic solution could preserve isolated myocyte contractile function after hypothermic, hyperkalemic cardioplegic arrest. Myocytes were isolated from the left ventricles of six pigs. Magnitude and velocity of myocyte shortening were measured after 2 hours of incubation under normothermic conditions (37 degrees C, standard medium), hypothermic, hyperkalemic cardioplegic arrest (4 degrees C in Ringer's solution with 20 mEq potassium chloride and 20 mmol/L 2,3-butanedione monoxime). Because beta-adrenergic agonists are commonly employed after cardioplegic arrest, myocyte contractile function was examined in the presence of the beta-agonist isoproterenol (25 nmol/L). Hypothermic, hyperkalemic cardioplegic arrest and rewarming reduced the velocity (32%) and percentage of myocyte shortening (27%, p < 0.05). Supplementation with 2,3 butanedione monoxime normalized myocyte contractile function after hypothermic, hyperkalemic cardioplegic arrest. Although beta-adrenergic stimulation significantly increased myocyte contractile function under normothermic conditions and after hypothermic, hyperkalemic cardioplegic arrest, contractile function of myocytes exposed to beta-agonist after hypothermic, hyperkalemic cardioplegic arrest remained significantly reduced relative to the normothermic control group. Supplementation with 2,3-butanedione monoxime restored beta-adrenergic responsiveness of myocytes after hypothermic, hyperkalemic cardioplegic arrest. Thus, supplementation of a hyperkalemic cardioplegic solution with 2,3-butanedione monoxime had direct and beneficial effects on myocyte contractile function and beta-adrenergic responsiveness after cardioplegic arrest. A potential mechanism for the effects of 2,3-butanedione monoxime includes modulation of intracellular calcium transients or alterations in sensitivity to calcium. Supplementation with 2,3-butanedione monoxime may have clinical utility in improving myocardial contractile function after hypothermic, hyperkalemic cardioplegic arrest.  相似文献   

14.
A mathematical model of mammalian cell intermediary metabolism is presented. It describes the distribution of the carbon-13 isotope (13C) at the different carbon positions of metabolites in cells fed with 13C-enriched substrates. The model allows the determination of fluxes through different metabolic pathways from 13C- and 1H-NMR spectroscopy and mass spectrometry data. The considered metabolic network includes glycolysis, gluconeogenesis, the citric acid cycle and a number of reactions corresponding to protein or fatty acid metabolism. The model was used for calculating metabolic fluxes in a rat tumor cell line, the C6 glioma, incubated with [1-13C]glucose. After evolution to metabolic and isotopic steady states, the intracellular metabolites were extracted with perchloric acid. The specific enrichments of glutamate, aspartate and alanine carbons were determined from 13C-, 1H-NMR spectroscopy, or mass spectrometry data. Taking into account the rate of glucose consumption and of lactate formation, determined from the evolution of glucose and lactate contents in the cell medium, and knowing the activity of the hexose monophosphate shunt, it was possible to estimate the absolute values of all the considered fluxes. From the analysis the following results were obtained. (a) Glucose accounts for about 78% of the pyruvate and 57% of the CoASAc. (b) A metabolic channelling occurs at the citric acid cycle level; it favours the conversion of carbons 2, 3, 4, and 5 of 2-oxoglutarate into carbons 1, 2, 3, and 4 of oxaloacetate, respectively. The percentage of channelled metabolites amounts to 39%. (c) The pyruvate carboxylase activity and the efflux from the citric acid cycle are estimated to be very low, suggesting a lack of glutamine production in C6 cells. The results emphasize different metabolic characteristics of C6 cells when compared to astrocytes, their normal counterpart.  相似文献   

15.
Studies from several groups have provided evidence that glutamate and glutamine are metabolized in different compartments in astrocytes. In the present study we measured the rates of 14CO2 production from U-[14C]glutamate and U-[14C]glutamine, and utilized both substrate competition experiments and the transaminase inhibitor aminooxyacetic acid (AOAA) to obtain more information about the compartmentation of these substrates in cultured rat brain astrocytes. The rates of oxidation of 1 mM glutamine and glutamate were 26.4 +/- 1.4 and 63.0 +/- 7.4 nmol/h/mg protein, respectively. The addition of 1 mM glutamate decreased the rate of oxidation of glutamine to 26.3% of the control rate, demonstrating that glutamate can effectively compete with the oxidation of glutamine by astrocytes. In contrast, the addition of 1 mM glutamine had little or no effect on the rate of oxidation of glutamate by astrocytes, demonstrating that the glutamate produced intracellularly from exogenous glutamine does not dilute the glutamate taken up from the media. The addition of 5 mM AOAA decreased the rate of 14CO2 production from glutamine to 29.2% of the control rate, consistent with earlier studies by our group. The addition of 5 mM AOAA decreased the rate of oxidation of concentrations of glutamate < or = 0.1 mM by approximately 50%, but decreased the oxidation of 0.5-1 mM glutamate by only approximately 20%, demonstrating that a substantial portion of glutamate enters the tricarboxylic acid (TCA) cycle via glutamate dehydrogenase (GDH) rather than transamination, and that as the concentration of glutamate increases the relative proportion entering the TCA cycle via GDH also increases. To determine if the presence of an amino group acceptor (i.e. a ketoacid) would increase the rate of metabolism of glutamate, pyruvate was added in some experiments. Addition of 1 mM pyruvate increased the rate of oxidation of glutamate, and the increase was inhibited by AOAA, consistent with enhanced entry of glutamate into the TCA cycle via transamination in the presence of pyruvate. Enzymatic studies showed that pyruvate increased the activity of mitochondrial aspartate aminotransferase (AAT). Overall, the data demonstrate that glutamate formed intracellularly from glutamine enters the TCA cycle primarily via transamination, but does not enter the same TCA cycle compartment as glutamate taken up from the extracellular milieu. In contrast, extracellular glutamate enters the TCA cycle in astrocytes via both transamination and GDH, and can compete with, or dilute, the oxidation of glutamate produced intracellularly from glutamine.  相似文献   

16.
Changes in the protein content, maximal activity, and Km of phosphate-dependent glutaminase were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes) from just-weaned, mature (3 months), and aged rats (15 months). Also, [U-14C] glutamine transport and decarboxylation and the production of glutamate and aspartate from 2 and 20 mM glutamine were measured in incubated mesenteric lymph node lymphocytes. The ageing process induced a reduction in the protein content of the thymus and spleen, as well as the phosphate-dependent glutaminase activity in the thymus and isolated lymphocytes. The Km of phosphate-dependent glutaminase, however, was not affected by the process. Ageing reduced [U-14C] glutamine decarboxylation and increased glutamate and aspartate production in incubated lymphocytes. The results indicate that the ageing process does modify several aspects of glutamine metabolism in lymphocytes: reduces maximal glutaminase activity and [U-14C] glutamine decarboxylation and increases the Km for [U-14C] glutamine uptake and the production of glutamate and aspartate.  相似文献   

17.
BACKGROUND: We determined whether activation of the nitric oxide/cyclic guanosine monophosphate pathway by sodium nitroprusside (SNP) protects hearts subjected to cardioplegic arrest and prolonged hypothermic storage. METHODS: Isolated rat hearts arrested with St. Thomas' II cardioplegia and stored at 3 degrees +/- 1 degree C for 8 hours were reperfused at 37 degrees C in Langendorff (10 minutes) and working (60 minutes) modes. RESULTS: During reperfusion, left ventricular work was depressed in stored hearts relative to fresh hearts. When present during arrest, storage, and both reperfusion phases, SNP (200 mumol/L) improved work to values close to those in fresh hearts. When added only during the 10-minute period of Langendorff reperfusion, SNP also improved the subsequent recovery of work. This effect was antagonized by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Poststorage coronary perfusion was not increased by SNP. CONCLUSIONS: The ability of SNP to enhance recovery independent of changes in coronary perfusion and in an ODQ-sensitive manner suggests that SNP-induced protection is due to activation of the myocardial nitric oxide/cyclic guanisine monophosphate pathway. These results suggest that supplementing cardioplegic solutions with SNP, administering SNP during early reperfusion, or both may offer additional means to improve donor heart preservation.  相似文献   

18.
We investigated the activity of the cerebral GABA shunt relative to the overall cerebral tricarboxylic acid (TCA) cycle and the importance of the GABA shunt versus 2-oxoglutarate dehydrogenase for the conversion of 2-oxoglutarate into succinate in GABAergic neurons. Awake mice were dosed with [1-(13)C]glucose, and brain extracts were analyzed by 13C NMR spectroscopy. The percent enrichments of GABA C-2 and glutamate C-4 were the same: 5.0 +/- 1.6 and 5.1 +/- 0.2%, respectively (mean +/- SD). This, together with previous data, indicates that the flux through the GABA shunt relative to the overall cerebral TCA cycle flux equals the GABA/glutamate pool size ratio, which in the mouse is 17%. It has previously been shown that under the experimental conditions used in this study, the 13C labeling of aspartate from [1-(13)C]-glucose specifically reflects the metabolic activity of GABAergic neurons. In the present study, the reduction in the formation of [13C]aspartate during inhibition of the GABA shunt by gamma-vinyl-GABA indicated that not more than half the flux from 2-oxoglutarate to succinate in GABAergic neurons goes via the GABA shunt. Therefore, because fluxes through the GABA shunt and 2-oxoglutarate dehydrogenase in GABAergic neurons are approximately the same, the TCA cycle activity of GABAergic neurons could account for one-third of the overall cerebral TCA cycle activity in the mouse. Treatment with gamma-vinyl-GABA, which increased GABA levels dramatically, caused changes in the 13C labeling of glutamate and glutamine, which indicated a reduction in the transfer of glutamate from neurons to glia, implying reduced glutamatergic neurotransmission. In the most severely affected animals these alterations were associated with convulsions.  相似文献   

19.
BACKGROUND: This study extends previous investigations of global and regional myocardial blood flow during early postcardioplegia reperfusion. The hypothesis tested is that coronary vascular regulation becomes abnormal within 3 minutes after the start of postcardioplegia reperfusion. METHODS: Pigs (n = 40) were supported by cardiopulmonary bypass and 38 degrees C blood cardioplegic solution was infused. A control preischemic microsphere injection (No. 1) was given in asystolic hearts. Groups 1 to 3 had 1 hour of hypothermic cardioplegic arrest. Group 4 (control group) had 1 hour of perfusion without cardioplegia. A blood cardioplegic solution at 38 degrees C and 70 mm Hg pressure was infused to maintain asystole during the initial 7 to 10 minutes of reperfusion in all groups. Left ventricular intracavitary pressures were set at 0, 10, 20, or 0 mm Hg in groups 1, 2, 3, and 4 (n = 10 pigs per group), respectively, during the initial 7 minutes of reperfusion. The ventricle was then decompressed. At 30 seconds, 3 minutes, and 6 minutes after reperfusion, microsphere injections 2, 3, and 4 were given in asystolic hearts. Microsphere injection No. 5 was given 10 minutes after reperfusion in beating vented hearts. RESULTS: (1) Left ventricular distention during the initial 7 minutes of reperfusion after hypothermic cardioplegic arrest attenuates postischemic hyperemia. (2) Left ventricular intracavitary pressure of 20 mm Hg during reperfusion causes a decrease in endocardial blood flow relative to epicardial blood flow at 6 minutes after reperfusion. (3) Global myocardial blood flow during postcardioplegia reperfusion falls significantly below preischemic control values despite the return of electromechanical activity. INFERENCE: Coronary vascular regulation (i.e., coronary resistance and metabolic flow recruitment) becomes abnormal within 3 minutes after the start of reperfusion after hypothermic blood cardioplegic arrest.  相似文献   

20.
The flux through different segments of the tricarboxylic acid cycle was measured in rat brain synaptosomes with gas chromatography-mass spectrometry using either deuterated glutamine or [13C]aspartate. The flux between 2-oxoglutarate and oxaloacetate was estimated to be 3.14 and 4.97 nmol/min/mg protein with and without glucose, respectively. These values were 3-5-fold faster than the flux between oxaloacetate and 2-oxoglutarate (0.92 nmol/min per mg protein) measured in the presence of glucose. The pattern of intermediates labeling suggests that the overall rate-controlling reaction involves either citrate synthase or pyruvate dehydrogenase but not 2-oxoglutarate or isocitrate dehydrogenase. The enrichment in [3,3,4,4-2H4]glutamate from [2,3,3,4,4-2H5]glutamine was as rapid as in [2,3,3,4,4-2H5]glutamate, which indicates that the aspartate aminotransferase reaction is severalfold faster than the flux through the tricarboxylic acid cycle. [13C]Aspartate was rapidly converted to [13C]malate, suggesting that in intact synaptosomes aspartate entry into the mitochondrion is very slow. The finding that aspartate is taken up by mitochondria as malate, along with the observed high enrichment in [3-2H]malate (from [2,3,3,4,4-2H5]glutamine), is consistent with the substantial synaptosomal activity of the malate/aspartate shuttle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号