首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work investigates the effect of deposition times on the structural, optical and photoluminescence properties of Cd0.9Zn0.1S thin films deposited on glass substrate by chemical bath deposition method. The deposition time was varied from 30 to 90 min. The deposited films were uniform and adherent to the glass substrates and amorphous in nature. Structural, optical and photoluminescence properties of Cd0.9Zn0.1S thin films were studied through X-ray diffraction, energy dispersive X-ray, scanning electron microscopy, UV–Vis absorption, fourier transform infra red spectroscopy and photoluminescence spectroscopy. The average crystal size was increased from ~1.3 to 2.5 nm with increase in deposition times. The absorption of the films was increased and the absorption peak shifted to lower wavelength side when deposition time increases. The increased energy gap from 2.4 to 2.49 eV with deposition time was due to quantum size effect and better crystallization. The presence of functional groups and chemical bonding were confirmed by FTIR. PL spectra showed two well distinct and strong bands; blue band around 407–415 nm and green band around 537–541 nm due to size effect.  相似文献   

2.
Successive Ionic Layer Adsorption and Reaction (SILAR) technique was used to deposit In1???xCdxS, In2S3 and CdS thin films on glass substrate at room temperature. The crystal structure and crystal size of the thin films were characterized by X-ray diffraction (XRD) method. Scanning Electron Microscopy (SEM) was used to determine morphology and composition of the films. Optical and electrical properties of these films have been investigated as a function of temperature. The photoluminescence measurements were carried out at room temperature and absorption measurements were carried out in the temperature range 10–320 K with a step of 10 K. The band gap energies for CdS, In0.8Cd0.2S, In0.6Cd0.4S, In0.4Cd0.6S, In0.2Cd0.8S and In2S3 thin films were found as 2.22 eV, 2.56 eV, 2.52 eV, 2.46 eV, 2.38 eV, and 2.72 eV, respectively. The refractive indices (n), optical static and high frequency dielectric constants (\({\in }_{0}\), \({\in }_{{\infty}}\)) values have been calculated by using the energy bandgap values. The electrical resistivity of CdS, Cd0.5In0.5S and In2S3 thin films have been determined using a ‘dc’ two probe method, in the temperature range of 300–450 K. The electrical resistivity values have been calculated at 300 K.  相似文献   

3.
In this study, (Cd1?xBix)S thin films were successfully deposited on suitably cleaned glass substrate at 60 °C temperature, using the chemical bath deposition technique. After deposition, the films were also annealed at 400 °C for 2 min in air. The structural properties of the deposited films were characterized using X-ray diffraction and AFM. Formation of cubic structure with preferential orientation along the (111) plane was confirmed together with BiS second phase from structural analysis. The interplanar spacing, lattice constant, and crystallite size of (Cd1?xBix)S thin films were calculated by the XRD. The crystallite size of the un-doped CdS thin films was found to be 7.84 nm, which increased to 11.1 nm with increasing Bi content from 0 to 10 %. The surface roughness of the films was measured by AFM studies. The photoluminescence spectra were observed at red shifted band edge peak with increasing doping concentration of Bi from 0 to 5 % in the un-doped CdS thin films. The optical properties of the films are estimated using optical absorption and transmission spectra in the range of 400–800 nm using UV–VIS spectrophotometer. The optical band gap energy of the films was found to be decreased from 2.44 to 2.23 eV with the Bi content being from 0 to 5 %. After annealing, the band gap of these films further decreased.  相似文献   

4.
Undoped and Co-doped ZnO thin films with different amounts of Co have been deposited onto glass substrates by sol–gel spin coating method. Zinc acetate dihydrate, cobalt acetate tetrahydrate, isopropanol and monoethanolamine (MEA) were used as a precursor, doping source, solvent and stabilizer, respectively. The molar ratio of MEA to metal ions was maintained at 1.0 and a concentration of metal ions is 0.6 mol L?1. The Co dopant level was defined by the Co/(Co + Zn) ratio it varied from 0 to 7 % mol. The structure, morphology and optical properties of the thin films thus obtained were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDX), scanning electron microscopy (SEM), ultraviolet–visible (UV–Vis), photoluminescence (PL) and Raman. The XRD results showed that all films crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis with the maximum crystallite size was found is 23.5 nm for undoped film. The results of SEM indicate that the undoped ZnO thin film has smooth and uniform surface with small ZnO grains, and the doped ZnO films shows irregular fiber-like stripes and wrinkle network structure. The average transmittance of all films is about 72–97 % in the visible range and the band gap energy decreased from 3.28 to 3.02 eV with increase of Co concentration. DRX, EDX and optical transmission confirm the substitution of Co2+ for Zn2+ at the tetrahedral sites of ZnO. In addition to the vibrational modes from ZnO, the Raman spectra show prominent mode representative of ZnyCo3?yO4 secondary phase at larger values of Co concentration. PL of the films showed a UV and defect related visible emissions like violet, blue and green, and indicated that cobalt doping resulted in red shifting of UV emission and the reduction in the UV and visible emissions intensity.  相似文献   

5.
LaAl1?x Co x O3 (x = 0, 0.05 and 0.10) thin films were fabricated on quartz substrates by sol–gel method. X-ray diffraction data indicate that all thin films belong to perovskite LaAlO3, and there is no secondary phase. Two obvious Raman peaks are observed in the Raman spectra, and the 113 cm?1 peak is assigned to A1 mode of perovskite LaAlO3 while the 696 cm?1 peak is caused by the Co–O stretching vibration. The band gap of the films decreases from 5.66 to 5.40 eV with the Co composition increasing from 0 to 10 %. The magnetization of the films was investigated, and it enhances significantly with increase of the Co content.  相似文献   

6.
Zn0.92Co0.08O thin films were fabricated on p-type Si (100) and quartz substrates by pulsed laser deposition using a ZnCoO ceramic target. The structural and magnetic properties of the films were characterized by field emission scan electronic microscopy, x-ray diffraction, x-ray photoemission spectroscopy, UV-visible transmission spectra, extended x-ray absorption fine structure spectroscopy and physical property measurement system. Substitutional doping of Co2+ in ZnO lattice is demonstrated in the films. The as-deposited Zn0.92Co0.08O thin film displayed intrinsic room temperature ferromagnetism with saturation magnetization (Ms) of ~ 0.20μB/Co. The corresponding Ms increased to ~ 0.23μB/Co when annealed in vacuum and further to ~ 0.42μB/Co after annealed in hydrogen. In turn, the Ms dropped to the value of ~ 0.13μB/Co after annealed in oxygen. Our studies indicate that oxygen vacancy density plays a key role in mediating the ferromagnetism of the diluted magnetic semiconductor films.  相似文献   

7.
Spin-coated CuxCo1?xFe2O4 (x = 0, 0.2, 0.4, 0.6, and 0.8) thin films were prepared on Pt/TiO2/SiO2/Si substrates. Pt/CuxCo1?xFe2O4/Pt structures were fabricated to investigate the effect of Cu doping concentration on the resistive switching behaviors. Structural and morphology characterizations revealed that Cu doping improved the crystallization of the thin films as compared to undoped CoFe2O4. Current–voltage characterization showed that all CuxCo1?xFe2O4 thin films showed unipolar resistance switching, but the distribution range of the set voltage, reset voltage, and resistances were much reduced by Cu doping. Clear improvement in the stability of these parameters started to appear with x = 0.4, and the optimized performance was observed in the Pt/Cu0.6Co0.4Fe2O4/Pt structure. The improved stability of the switching parameters was attributed to the enhancement of hopping process between the Fe ions and the Cu ions in the spinel lattice. Our results indicated that appropriate adjustment of the doping elements in oxides can be a feasible approach in achieving stable resistance switching memory devices.  相似文献   

8.
Cd1?xZnxS nanoparticles for Zn = 0–30 % were successfully synthesized by a conventional chemical co-precipitation method at room temperature. X-ray diffraction spectra confirmed the pure zinc blend cubic structure of undoped CdS; but Zn-doping on Cd–S matrix induced the mixed phases of cubic and hexagonal structure. The reduced crystal size, d-value, cell parameters and higher micro-strain at lower Zn concentration were due to the distortion produced by Zn2+ in Cd–S lattice. The enhancing diffraction intensity at lower Zn concentrations was due to the substitution of Zn2+ ions instead of Cd2+ ions whereas the reduced intensity after 20 % was due to the presence of Zn2+ ions both as substitutionally and interstitially in Cd–S lattice. The nominal stoichiometry and chemical purity was confirmed by energy dispersive X-ray analysis. The initial blue shift of energy gap from undoped CdS (3.75 eV) to Zn = 10 % (3.82 eV) was due to the size effect and also the incorporation of Zn2+ in the Cd–S lattice. The observed red shift of energy gap at higher Zn concentrations could be attributed to the improved crystallinity. The band gap tailoring was useful to design a suitable window material in fabrication for solar cells and other opto-electronic devices. The characteristic IR peaks around 617–619 cm?1 and the reduced intensity by Zn-doping confirmed the presence of Zn in Cd–S lattice.  相似文献   

9.
Indium doped Cd0.6Hg0.4Se thin films have been prepared using simple chemical bath deposition technique with the objectives to study structural, optical, electrical changes taking place upon doping and to test their electrochemical properties. The ‘as deposited’ thin films were characterized by XRD, AAS, EDAX SEM, optical absorption, thermo-electrical techniques and photo-electrochemical studies. The donor atoms were found to dissolve substitutionally in the lattice of Cd0.6Hg0.4Se up to a certain range of doping concentration. The films were polycrystalline in the single cubic phase without appreciable lattice distortion. The crystallinity, grain size, band gap, conductivity were found to increase with increase in indium content up to 0.1 mol%. The carrier concentration and mobility were found to depend on indium content and temperature. An enhancement in the PEC efficiency, Voc, Isc and the fill factor has been found.  相似文献   

10.
ZnS thin films were prepared by chemical bath codeposition using ZnSO4–ZnCl2 or Zn(CH3COO)2–ZnCl2 as zinc ion sources. The presence of SO4 2? favors the heterogeneous growth of ZnS thin film. The coexistence of two zinc salts impedes the formation of homogeneous precipitation and improves the growth rate of ZnS film. XRD and HRTEM results show that all the samples exhibit the cubic structure. EDS analysis shows that Zn/S atom ratios from the codeposition are closer to 1:1 than those deposited from a single zinc salt, and ZnS thin films of S3 and S7 are very uniform without stirring. FTIR reveals that –NH2 group as a surface modifier is adsorbed on the surface of ZnS nanoparticles. Raman spectra further reveal that S3, S4 and S7 form the ZnS films, and ZnO phase is present in short or middle range of the S6 nanocrystal, indicating that different amounts of zinc salts affect the structure of ZnS films significantly after three 2.5 h deposition cycles. The grain sizes determined by FESEM are inversely proportional to RMS determined by AFM. The band gap values of ZnS thin films agree well with the results of HRTEM. The photocurrent responses of different samples are similar, indicating that different amounts of zinc salts have little effect on the photocurrent of ZnS films. The photocatalytic performance of S6 and S8 is much better than that of S1–S5. S6 decomposes 65 % of methyl orange within 3 h, and its K value is 4.78 × 10?1 h?1. The photocatalytic performance is induced by the growth mechanism, which determines the grain size of ZnS thin film. The tendency of grain sizes of ZnS films agrees well with that of photocatalytic performance, especially under the clusters by clusters deposition.  相似文献   

11.
Semiconducting Cu2S thin films were successfully deposited on glass substrate under three different conditions such as as-deposited, post heat-treated and pre heated precursor solution by chemical bath deposition technique. Structural and optical properties of the films were characterized by X-ray diffraction (XRD), scanning electron microscope, energy dispersive X-ray (EDX) analysis and UV–Visible spectrophotometer. The XRD spectra showed the amorphous nature of thin films with hexagonal structure. The d value and micro strain increased and the average crystallite size decreased from 1.9 to 1.4 and 1.3 nm respectively when the as-deposited film was subjected to post heat-treatment and the precursor solution temperature was elevated. The presence of more nucleation centers and fast reaction rate decreased the average crystallite size in films grown with pre heated precursor solution. The noticed blue shift in energy gap and the shift of XRD peak position towards the lower 2θ side by heat-treatment could be considered as a sign of the quantum confined effect due to the formation of the nano-sized Cu2S crystals on the surface. The transmittance of heat-treated Cu2S films in the visible region matched the phototropic vision of human eye (~600 nm) which makes them suitable for solar control coatings on architectural windows and automobiles in the regions with warm climates. Low transmittance behaviour of pre heated Cu2S films could be used for anti dazzling coatings for car windscreens and driving mirrors to reduce the dazzling effects of light at night. EDX spectra showed the chemical purity of the films. The observed broad absorption and blue shift in band gap of the heat-treated films were due to quantum confinement effect. Fourier transform infrared studies were also carried out and the results are presented.  相似文献   

12.
CuIn(S,Se)2 thin films were grown on soda-lime glass substrates by one-step evaporation Cu–In precursors processes. Effects of synthesis temperature on the structural and optical properties of CuIn(S,Se)2 absorption layers were studied. The changes of surface morphology among different samples were observed by field-emission scanning electron microscopy. From X-ray diffraction images and Raman spectra, the CuIn(S,Se)2 films had good crystallinity quality when the synthesis temperature was 550 °C. The FWHM of (112) peaks decreased from 0.537° to 0.180°, and secondary phase Cux(S,Se) disappeared when the synthesis temperature increased from 300 to 550 °C. The Raman spectra of the films also showed the CuIn(S,Se)2 A1 mode peaks existed chalcopyrite, and the blue shift of the CuIn(S,Se)2 A1 mode peaks from 289 to 284 cm?1. The optical properties of the films were showed by transmission spectra, and the energy band gap of the CuIn(S,Se)2 thin films fabricated at 550 °C is 1.34 eV.  相似文献   

13.
In an attempt to design and fabricate a suitable II–VI group material of variable optical gap, we have synthesized a series of ZnxCo1?xS (0 ≤ x ≤ 0.4) thin films via a facile chemical solution growth technique. To gain insight of the materials properties we have opted for different characterization techniques and are reporting our observations pertaining to the elemental analysis, magneto-topography, optical and electrical transport studies. Excellent agreement of binding energy values for Co2p, Zn2p and S2p levels in elemental analysis concluded the oxidation states as Co2+, Zn2+ and S2?. Magnetic force microscopy confirmed the existence of randomly distributed magnetic domains mimicking the surface topography. The optical studies determined the high absorption coefficient (α ≈ 104 to 105 cm?1) in the as-grown thin films. The optical band gap is found to be increased non-linearly from 1.59 to 2.50 eV as the composition parameter (x) is increased. The D.C. electrical conductivity measurements showed decrease in conductivity with increased composition parameter (x). The thermoelectric studies confirmed degenerative nature of the as-deposited thin films with n-type conduction.  相似文献   

14.
Cobalt doped zinc oxide thin films have been deposited using spray pyrolysis method. These single phasic films exhibited [100] preferential texture and small decrease in the lattice parameter on cobalt substitution. The films having different Co concentration have almost similar surface morphology and microstructure. These Zn1?x Co x O (x ≤ 0.10) thin films distinctly showed ferromagnetic character at room temperature. The optical transmission measurements of these films clearly proved that in these films Co substitutes for Zn2+ and exists in +2 state. Based on the optical, structural and magnetic measurements, the possibility of occurrence of ferromagnetic ordering due to cobalt clustering is ruled out in these spray-pyrolyzed films. A correlation of the observed ferromagnetic behavior in these Zn1?x Co x O films with structural change resulting from the addition of Co is presented in this paper.  相似文献   

15.
CdS thin films were prepared by chemical bath deposition technique using the precursors of SC(NH2)2, CdCl2, NH4Cl, NH3·H2O and deionized water. The obtained thin films were characterized by scanning electron microscopy, X-ray diffraction, energy dispersive spectrometer, UV–VIS specrophotometry and photoluminescence spectroscopy. The morphology, structural and optical properties of CdS thin films were investigated as a function of ammonia concentration and S/Cd molar ratios in precursors. The results reveal that morphology of CdS films change from flake like into spherical particle like, crystal structure from wurtzite structure to zinc blende structure, S/Cd atom ratios in CdS thin films increase and optical band gap E g decrease with increasing ammonia concentration in precursors. The room temperature photoluminescence spectrum of CdS thin films shows a strong peak at about 500 nm and a weak peak at about 675 nm.  相似文献   

16.
Copper zinc tin sulfide (CZTS, Cu2ZnSnS4) is a low band gap semiconductor that is attractive for use in solar cells. We investigated the dependence of the structure and properties of CZTS thin films on the temperature used to sulfurize precursor thin films composed of copper, zinc and tin fabricated by electrochemical deposition. The precursor films were sulfurized in a furnace with three zones, which allowed fine control of the sulfurization temperature between 250 and 400 °C. X-ray diffraction and Raman spectroscopic measurements confirmed that the films were composed of CZTS following sulfurization. The grain size and crystallinity of the films increased with sulfurization temperature. The composition of CZTS also varied with sulfurization temperature. The proportions of Cu and Zn increased while that of Sn decreased with increasing sulfurization temperature. Absorption and reflectance spectra revealed that the absorption coefficients and band gaps of the CZTS films varied with sulfurization temperature between 3–4.1 × 104 cm?1 and 1.4–1.53 eV, respectively. Solar cells containing CZTS sulfurized at 400 °C showed a maximum efficiency of 2.04 %, which was attributed to the higher crystallinity and larger grain size of CTZS compared with thin films sulfurized at lower temperatures. Our results show that control of sulfurization temperature is an important factor in optimizing the performance of CZTS thin films in solar cells.  相似文献   

17.
Annealed ZnO thin film at 300, 350, 400, 450 and 500 °C in air were deposited on glass substrate by using pulsed laser deposition. The effects of annealing temperature on the structural and optical properties of annealed ZnO thin films by grazing incident X-ray diffraction (GIXRD), transmittance spectra, and photoluminescence (PL) were investigated. The GIXRD reveal the presence of hexagonal wurtzite structure of ZnO with preferred orientation (002). The particle size is calculated using Debye–Scherrer equation and the average grain size were found to be in the range 5.22–10.61 ± 0.01 nm. The transmittance spectra demonstrate highly transparent nature of the films in visible region (>70 %). The calculation of optical band gap energy is found to be in the range 2.95–3.32 ± 0.01 eV. The PL spectra shows that the amorphous film gives a UV emission only and the annealed films produce UV, violet, blue and green emissions this indicates that the point defects increased as the amorphous film was annealed.  相似文献   

18.
The ternary CdS1?xSex alloy thin films with the nominal composition of x?=?0.2, 0.4, 0.6 and 0.8 have been synthesized on glass substrate by chemical bath deposition (CBD) method at 80°C from aqueous solution. Crystalline phases and optical absorption of the films have been studied by X-ray diffraction and UV–visible spectrophotometer. Elemental composition of the CdS1?xSex films was studied by the energy dispersive X-ray (EDX) analysis. The optical absorption and transmission studies revealed that CdS1?xSex films had direct allowed transition with band gap energy decreased from 2.28 to 1.92?eV as thickness varied from 762.4 to 621.2?nm. The average crystalline size was calculated from X-ray line broadening and it is increased from 12.71 to 14.67?nm for x?=?0.2–0.8 which was confirmed by SEM studies. The substitution of Se concentrations into the Cd–S and Cd–S–Se lattice is confirmed by the increase of lattice parameters, FTIR and photoluminescence studies. The broad variation in the band gap of CdS1?xSex thin films have potential applications in the field of optoelectronic devices.  相似文献   

19.
The thin films of Cd1-x Zn x S (x?=?0, 0.2, 0.4, 0.6, 0.8 and 1) have been prepared by the vacuum evaporation method using a mechanically alloyed mixture of CdS and ZnS. The structural, optical and electrical properties have been investigated through the X-ray diffractometer, spectrophotometer and Keithley electrometer. The X-ray diffraction patterns of these films show that films are polycrystalline in nature having preferential orientation along the (002) plane. In the absorption spectra of these films, absorption edge shifts towards lower wavelength with the increase of Zn concentration. The energy band gap has been determined using these spectra. It is found that the energy band gap increases with increasing Zn concentration. The electrical conductivity of so prepared thin films has been determined using a IV characteristic curve for these films. The result indicates that the electrical conductivity decreases with increasing Zn content and increases with temperature. An effort has also been made to obtain activation energy of these films which increases with increasing Zn concentration in CdS.  相似文献   

20.
The ZnSxSe1?x thin films were prepared by chemical bath deposition technique on glass substrates. The composition ‘x’ was varied from 0 to 1 by changing the concentration of thiourea and sodium selenosulphate in the precursors. The morphology, structural and optical properties of the ZnSxSe1?x thin films were characterized by energy dispersive spectrometer, scanning electron microscopy, X-ray diffraction and UV-Vis spectrophotometer. The results reveal that the ZnSxSe1?x films are cubic zinc blende structure for x = 0, 0.19, 0.25, and amorphous for x = 0.75, 1. The optical band gap of the ZnSxSe1?x films increase from 2.88 to 3.76 eV when the value of ‘x’ increases from 0 to 1. The growth mechanism of the ZnSxSe1–x films was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号