首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: It has been shown that thermochemotherapy (TC) given prior to radiation reduces the number of clonogens, with a resultant decrease in the tumor control radiation dose. The purpose of this article was to investigate using an animal tumor model how this clonogen reduction affects subsequent fractionated radiotherapy, including repopulation of surviving clonogens, and whether the induction TC can increase the therapeutic gain factor (TGF). METHODS AND MATERIALS: The single-cell suspensions prepared from the fourth-generation isotransplants of a spontaneous fibrosarcoma, FSa-II, were transplanted into the C3Hf/Sed mouse foot. TC was given by heating tumors at 41.5 degrees C for 30 min immediately after an intraperitoneal injection of cyclophosphamide (200 mg/kg) when tumors reached an average diameter of 4 mm. Fractionated radiotherapy (R) with equally graded daily doses was initiated 24 h after TC either in air (A) or under hypoxic conditions (H). The 50% tumor control dose (TCD50) and the radiation dose to induce a score 2.0 reaction (complete epilation with fibrosis) in one-half of irradiated animals, RD50(2.0), were obtained, and the TGF was calculated. Our previous results on the fractionated radiotherapy using the same tumor system served as controls. RESULTS: The TCD50(A, single dose) and TCD50(H, single dose) following TC+R were 52.2 and 57.3 Gy, respectively, which were 14.0 and 20.4 Gy lower than those following radiation alone. The TCD50(A, TC+R) increased only slightly when the number of fractions was increased from one to 10 doses, and all TCD50s were significantly lower than the TCD50(A, R alone). Both TCD50(H, TC+R) and TCD50(H, R alone) increased consistently from a single dose to 20 doses, but all TCD50(H, TC+R) were significantly lower than the TCD50(H, R alone). Regarding the normal tissue reaction, the RD50 values both following TC+R and R alone increased consistently from a single dose to 20 daily doses. However, the RD50(TC+R) and RD50(R alone) for each corresponding number of fractions was not significantly different, resulting in the TGFs significantly > 1.0 for combined TC+R treatments, with the exception of 20 daily doses given in air. CONCLUSION: The induction TC decreased the TCD50 values substantially without altering the RD50 for a late reaction, resulting in an significant increase in the TGF. These results encourage the use of TC as an induction treatment prior to fractionated radiotherapy.  相似文献   

2.
The response of a murine tumour to single doses of X rays has been measured using three different assays--animal cure, cell survival in vitro after irradiation in vivo, and tumour growth delay. The dose to cure 50% of the animals, the TCD50, was 79.0 Gy. This was not affected by clamping the tumours to render all the cells hypoxic at the time of irradiation, implying that most of the cells in the tumour were hypoxic already. The enhancement ratio for the hypoxic cell sensitizer Ro-07-0582 was 2.1. The cell survival assay gave an enhancement ratio of 1.6 and an hypoxic fraction of 5%. The discrepancy in the estimates of the hypoxic fraction can be explained by the ability of the naturally hypoxic cells, but not the oxic ones, to recover from potentially lethal damage in vivo. Neither the cell survival assay nor the growth delay assay agreed with the TCD50 assay as to the effect of the hypoxic cell sensitizer, even allowing for recovery from potentially lethal damage. It is doubtful whether the measured survival curve would predict the measured TCD50.  相似文献   

3.
PURPOSE: For hypoxic and anoxic cells in solid tumors to be a therapeutic problem, they must live long enough to be therapeutically relevant, or else be rapidly recruited into the proliferating compartment during therapy. We have, therefore, estimated lifetime and recruitment rate of hypoxic human tumor cells in multicell spheroids in vitro, or in xenografted tumors in SCID mice. MATERIALS AND METHODS: Cell turnover was followed by flow cytometry techniques, using antibodies directed at incorporated halogenated pyrimidines. The disappearance of labeled cells was quantified, and verified to be cell loss rather than label dilution. Repopulation was studied in SiHa tumor xenografts during twice-daily 2.5-Gy radiation exposures. RESULTS: The longevity of hypoxic human tumor cells in spheroids or xenografts exceeded that of rodent cell lines, and cell turnover was slower in xenografts than under static growth as spheroids. Human tumor cells remained viable in the hypoxic regions of xenografts for 4-10 days, compared to 3-5 days in spheroids, and 1-3 days for most rodent cells in spheroids. Repopulation was observed within the first few radiation treatments for the SiHa xenografts and, with accumulated doses of more than 10 Gy, virtually all recovered cells had progressed through at least one S-phase. CONCLUSION: Our results suggest an important difference in the ability of human vs. rodent tumor cells to withstand hypoxia, and raise questions concerning the increased longevity seen in vivo relative to the steady-state spheroid system.  相似文献   

4.
5.
Mesothelioma is a malignant pleural or intraperitoneal tumor attributable to asbestos exposure in more than 80% of the cases. Manganese superoxide dismutase (MnSOD), a mitochondrial superoxide radical scavenging enzyme, is low in most tumors but is known to be induced by asbestos fibers and certain cytokines. Induction of MnSOD may be associated in asbestos-related pulmonary diseases in vivo. We investigated here MnSOD specific activity and MnSOD mRNA level using healthy human lung tissue, SV40-transformed human pleural mesothelial cells (Met5A), and six human malignant mesothelioma cell line cells. Total SOD (CuZnSOD + MnSOD) and MnSOD activities were 20.0 +/- 4.8 U/mg protein and 3.2 +/- 1.2 U/mg protein in healthy human lung tissue, and 25.6 +/- 10.7 U/mg and 3.8 +/- 1.0 U/mg in Met5A cells, respectively. In four mesothelioma cell lines MnSOD activity was significantly elevated, the highest activity (30.1 +/- 8.2 U/mg) was almost 10-fold compared to the activity in Met5A cells. The steady state mRNA level of MnSOD was low in Met5A cells and markedly higher in all mesothelioma cell lines roughly in proportion with enzyme activities. Cytotoxicity experiments, which were conducted in four cell lines, indicated that cells containing high MnSOD mRNA level and activity were resistant to the mitochondrial superoxide-producing agent menadione. In conclusion, our results suggest that human mesothelioma may express high levels of MnSOD, which is associated with high oxidant resistance of these cells.  相似文献   

6.
Recently, we demonstrated that the oxygen dependence of the formation of DNA-protein crosslinks (DPCs) in irradiated mammalian cells measured by the alkaline elution technique is the mirror image of the oxygen dependence of radiation-induced cell killing. Consequently, these radiation-induced DPCs could be used to detect hypoxic cells or estimate the hypoxic fraction of cells in solid tumors. Although several techniques, including alkaline elution, gas chromatography/mass spectrometry (GC/MS) and nitrocellulose filter binding, have been used to measure radiation-induced DPCs, the published reports suggest that the characteristics of these DPCs may depend on both the type of sample irradiated (cellular compared to model systems, oxygenated compared to hypoxic, etc.) and the technique used to measure these radiation-induced DPCs. In the present study, the radiation-induced DPCs measured by our alkaline elution technique with and without proteinase K in the lysis solution were characterized by studying the dependence of their formation on temperature in hypoxic rat 9L brain tumor cells. Exponentially growing 9L rat brain tumor cells were rendered hypoxic at 4 degrees C or at 37 degrees C and then irradiated with either 7.5 Gy or 15 Gy. The cells were trypsinized at 4 degrees C, either immediately after the irradiation or after one half-time of strand break repair at 37 degrees C. The results demonstrated that the radiation-induced DPCs produced in 9L cells under hypoxic conditions, measured by our alkaline elution technique after low to moderate radiation doses, required metabolism for their formation, unlike the radiation-induced DPCs reported by others using the GC/MS or nitrocellulose filter binding technique.  相似文献   

7.
We have used the combination of pimonidazole labeling of hypoxic cells, bromodeoxyuridine labeling of proliferating cells, and cell sorting based on Hoechst 33342 perfusion to directly study hypoxia and proliferation in human tumor xenografts and transplantable murine tumors in vivo. Hypoxia was largely confined to cells in regions with the least perfusion, although in tumors exhibiting transient blood flow, hypoxic cells were not as highly localized. Similarly, proliferation and hypoxia were mutually exclusive except in areas of a tumor subjected to transient changes in perfusion. By determining the clonogenic potential, pimonidazole labeling intensity, and radiosensitivity of sorted tumor cell subpopulations, we have provided direct evidence that pimonidazole identifies hypoxic tumor cells of therapeutic relevance in vivo. Given that pimonidazole exhibits few diffusion or delivery problems and no apparent cytotoxicity, it appears to be a versatile and useful label for hypoxic cells in solid tumors.  相似文献   

8.
PURPOSE: In the search for a sensitive, accurate, and noninvasive technique for quantifying human tumor hypoxia, our laboratory has synthesized several potential radiodiagnostic agents. The purpose of this study was to assess and compare the hypoxic marking properties of both radioiodinated and Tc-99m labeled markers in appropriate test systems which can predict for in vivo activity. MATERIALS AND METHODS: Preclinical assessment of hypoxic marker specificity and sensitivity employed three laboratory assays with tumor cells in vitro and in vivo. Radiolabeled marker uptake and/or binding to whole EMT-6 tumor cells under extremely hypoxic and aerobic conditions was measured and their ratio defined hypoxia-specific factor (HSF). Marker specificity to hypoxic tumor tissue was estimated from its selective avidity to two rodent tumors in vivo, whose radiobiologic hypoxic fractions (HF) had been measured. The ratios of % injected dose/gram (%ID/g) of marker at various times in EMT-6 tumor tissue relative to that in the blood and muscle of scid mice were used to quantify hypoxia-specific activity. This tumor in this host exhibited an average radiobiologic HF of approximately 35%. As well, nuclear medicine images were acquired from R3327-AT (HF approximately =15%) and R3327-H (no measurable HF) prostate carcinomas growing in rats to distinguish between marker avidity due to hypoxia versus perfusion. RESULTS: The HSF for FC-103 and other iodinated markers were higher (5-40) than those for FC-306 and other Tc-99m labeled markers. The latter did not show hypoxia-specific uptake into cells in vitro. Qualitative differences were observed in the biodistribution and clearance kinetics of the iodinated azomycin nucleosides relative to the technetium chelates. The largest tumor/blood (T/B) and tumor/muscle (T/M) ratios were observed for compounds of the azomycin nucleoside class in EMT-6 tumor-bearing scid mice. These markers also showed a 3-4 x higher uptake into R3327-AT tumors relative to the well-perfused R3327-H tumors. While both FC-306 and CERETEC rapidly distributed at unique concentrations to different tissues, their avidity to EMT-6 and R3327-AT tumors did not correlate with tumor HF. CONCLUSIONS: The halogenated azomycin nucleosides with the lowest lipid/water partition coefficient values were found to yield the optimal hypoxia-specific signal in these animal tumors. Our Tc-99m-labeled azomycin chelates showed little or no hypoxia-specific uptake and had in vivo biodistribution and clearance kinetics similar to those of CERETEC, a perfusion agent with no known hypoxic binding activity.  相似文献   

9.
RSR13, 2[4-[[(3,5dimethylanilino)carbonyl]methyl]phenoxy]-2-methylpropion ic acid, a synthetic allosteric modifier of hemoglobin, reduces the affinity of hemoglobin for oxygen. The experiments reported here examined the effect of treatment with RSR13, combined with oxygen breathing, on the radiation response of EMT6 mammary tumors in BALB/c mice and of two normal tissues. RSR13 plus oxygen breathing increased the response of EMT6 tumors to irradiation. RSR13 had no discernible effects on tumors rendered maximally hypoxic by nitrogen asphyxiation, no discernible cytotoxic effects in EMT6 tumors, and no effect on the viability or radiation response of EMT6 cells in vitro under either aerobic or hypoxic conditions. The effects of RSR13 therefore reflect changes in tumor oxygenation, rather than a direct cytotoxic or radiosensitizing effect of the drug. RSR13 plus oxygen reduced the hypoxic fraction to 9% from the value of 24% found in both air-breathing and oxygen-breathing mice. Treatment with RSR13 plus oxygen did not alter the radiation response of the bone marrow progenitor cells (CFU-S) or acute radiation reactions in the skin. The improvement in tumor radiation response produced by treatment with RSR13 plus oxygen, combined with the absence of enhanced radiation reactions in the normal tissues, support further testing of RSR13 as an adjunct to radiotherapy.  相似文献   

10.
The presence of hypoxic cells in human tumors is thought to be one of the principal reasons for the failure of radiation therapy. Intensive laboratory and clinical efforts to overcome tumor hypoxia have focused on oxygenating, radiosensitizing or killing the maximally radioresistant fraction of tumor cells. This "hypoxic fraction" dominates the single-dose radiation response, irrespective of the oxygenation status of the remainder of the tumor cell population. However, at doses that are typical of those delivered in a daily radiotherapy protocol, we show that the tumor response is highly dependent upon the cells at oxygen levels intermediate between fully oxygenated and hypoxic (0.5-20 mm Hg). For most tumors, these cells are more important than the radiobiologically hypoxic cells in determining treatment outcome after 30 fractions of 2 Gy. We also show that under conditions of diffusion-limited hypoxia, the impact of full reoxygenation between fractions is much smaller than previously realized. Together, the results imply that tumor hypoxia plays a more significant role in determining the outcome of fractionated radiotherapy than previous measurements and assumptions of hypoxic fractions have indicated. Therefore, the concept of a hypoxic fraction in human tumors is less meaningful when pertaining to a fractionated radiotherapy regimen, and should not be expected to be useful for predicting tumor responses in the clinic. This implies the need to characterize tumor oxygenation in a manner that reflects the true oxygenation status of all the tumor cells, not just the ones most refractory to the effects of ionizing radiation. Furthermore, effective therapeutic agents must have the ability to specifically sensitize or kill those cells at intermediate levels of oxygen in addition to the radiobiologically hypoxic cells.  相似文献   

11.
Microenvironmental conditions within solid tumors can have marked effects on the growth of the tumors and their response to therapies. The disorganized growth of tumors and their attendant vascular systems tends to result in areas of the tumors that are deficient in oxygen (hypoxic). Cells within these hypoxic areas are more resistant to conventional therapies such as radiation and chemotherapy. Here, we examine the hypoxic state of EMT6 mouse mammary tumors and the location of host cells within the different areas of the tumors to determine whether such microenvironmental conditions might also affect their ability to be recognized by the immune system. Hypoxia within tumors was quantified by flow cytometry and visualized by immunohistochemistry using a monoclonal antibody (ELK3-51) against cellular adducts of 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetam ide (EF5), a nitroimidazole compound that binds selectively to hypoxic cells. Thy-1+ cells, quantified using a monoclonal antibody, were found only in the well-oxygenated areas. The location of these Thy-1+ cells was also examined in EMT6 tumors that had been transfected with the gene for interleukin-2 (IL-2) because these tumors contain greatly increased numbers of host cells. Surprisingly, we found that IL-2-transfected tumors had significantly decreased hypoxia compared to parental tumors. Furthermore, using the fluorescent dye Hoechst 33342, an in vivo marker of perfused vessels, combined with immunochemical staining of PECAM-1 (CD31) as a marker of tumor vasculature, we found increased vascularization in the IL-2-transfected tumors. Thus, expression of IL-2 at the site of tumor growth may enhance tumor immunity not only by inducing the generation of tumor-reactive CTLs but also by allowing increased infiltration of activated T cells into the tumors.  相似文献   

12.
BACKGROUND: It has been suggested that tumors respond differently after irradiation with 10 or more fractions than with less fractionated regimens and that extrapolation from experiments with only a few fractions to "curative" regimens may be invalid. To test this hypothesis, we compared hypofractionated-accelerated treatments with "curative" fractionation schedules in human squamous cell carcinoma in nude mice. MATERIAL AND METHODS: FaDu tumors were transplanted subcutaneously into the hindleg of NMRI nu/nu mice. TCD50 values, i.e., the dose necessary to control 50% of the tumors locally, were determined after irradiation under ambient blood flow conditions with 5 and 10 fractions in 5 days, 10 fractions in 10 days, and 30 fractions in 15 days, 6 weeks or 10 weeks. RESULTS: TCD50 values of the hypofractionated regimens were not significantly different and varied from 41 to 46 Gy. The number of fractions given in the same overall time had no measurable effect on local tumor control. The TCD50 after 30 fractions in 6 weeks was 30 Gy higher than after the hypofractionated regimens. This effect was caused by a substantial increase of TCD50 with overall treatment time, the dose recovered per day was 0.82 Gy (95% CI 0.66; 0.96). alpha/beta eff determined from all data was 58 Gy (13; infinite). CONCLUSIONS: The results of the present study compare well with our previous findings after different "curative" fractionation schedules in the same tumor. Thus, our study does not support that tumors respond differently after application of 10 or more fractions compared to less fractionated regimens. The biological mechanisms that govern the radiation response of FaDu tumors appear to be the same for hypofractionated-accelerated and "curative" regimens. Since only one tumor was investigated, these results cannot be generalized at the present time.  相似文献   

13.
PURPOSE: 2-Nitroimidazole acetamide TX-1877 and its derivatives (TX-1877 analogs) were designed, synthesized, and evaluated by their in vitro and in vivo radiosensitization, tumor growth control, suppression of lung metastasis, and immunopotentiation, as biological response modifier (BRM)-functional hypoxic cell radiosensitizers. MATERIALS AND METHODS: TX-1877 analogs were designed and synthesized in our laboratory. In vitro radiosensitizing ability was estimated using EMT6/KU cells under hypoxic conditions. In vivo radiosensitization, antimetastasis, and immunopotentiation were evaluated using female C3H/He mice bearing the SCCVII tumor. Days (15 or 10) after the inoculation of 10(5) SCCVII tumor cells into the hinder thigh, a drug (0.4 mg/g) was administered i.p. and local irradiation of 30 Gy was given at 30 min after its administration. Tumor growth was observed for 20 days and mice were euthanized to count the number of metastatic nodules on the surface of the lungs. Tumor tissues were extirpated and stained by the ABC method at 1, 2, and 3 weeks after treatment for immunological evaluation. RESULTS: Novel types of bifunctional radiosensitizers, TX-1877 and its analogs possessing BRM-functions (i.e., antimetastatic and immunopotentiation effects) were developed. In vitro radiosensitizing abilities of TX-1877 and its analogs, with their partition coefficient values of more than 0.050, were comparable to misonidazole (MISO) at their doses of 1 mM. Tumor regrowth was suppressed evidently 20 days after the treatment in the irradiated group with TX-1877 (TX-1877 plus R) and with KIN-806 (KIN-806 plus R). The former group reduced markedly the mean number of metastatic lung nodules regardless of radiation therapy. TX-1877 and KIN-806 plus R induced helper T lymphocytes. The TX-1877, TX-1877 plus R, KIN-806, and KIN-806 plus R enhanced macrophage infiltration for 3 weeks after treatment. CONCLUSION: TX-1877 is an excellent BRM-functional hypoxic cell radiosensitizer, expected to be useful for clinical use.  相似文献   

14.
PURPOSE: 5,6-dimethylxanthenone-4-acetic acid (DMXAA) selectively damages tumor vasculature and is currently in clinical trial as an antitumor agent. Its ability to induce synthesis of tumor necrosis factor (TNF), and its apparent selectivity for poorly-perfused regions in tumors, suggests it possible use in combination with radiotherapy. This investigation examines activity of DMXAA as a radiation modifier using two murine tumors. METHODS AND MATERIALS: Tumor growth delay was evaluated using i.m. RIF-1 and MDAH-MCa-4 tumors irradiated in unanaesthetised, restrained mice (cobalt-60) using single dose or multiple fractions (8 x 2.5 Gy over 4 days) with DMXAA administered i.p. at various times in relation to irradiation. RESULTS: Administration of DMXAA (80 micromol/kg, i.p.) immediately after radiation resulted in a large increase in tumor growth delay, giving a radiation dose modifying factor of 2.3 for RIF-1 and 3.9 for MDAH-MCa-4. The combination was less active when radiation was given 1-4 h after DMXAA, but was highly active 12-48 h after DMXAA. At the latter times, clamping the tumor blood supply caused a large increase in radioresistance. These studies suggest that cells surviving DMXAA are hypoxic for only a short period. DMXAA increased overall growth delay when administered daily during fractionated irradiation, giving an approximately additive response. CONCLUSIONS: The marked synergy between DMXAA and single dose ionising radiation may reflect the complementarity of these agents at the microregional level, with DMXAA preferentially killing hypoxic cells in poorly perfused regions. Despite additional hypoxia shortly after DMXAA treatment, surviving cells appear to reoxygenate quickly which makes it feasible to use DMXAA before and during fractionated radiotherapy. The combination of fractionated radiation and DMXAA appears to be less effective than for single dose radiation (possibly because of the smaller contribution of hypoxia under these conditions), but may be therapeutically useful.  相似文献   

15.
BACKGROUND: Recently, micronucleus assay is expected to be one of the radiosensitivity tests. The usefulness of micronucleus assay was compared with MTT assay and clonogenic assay using 5 human derived urological cancer cell lines, NBT-2, T24, PC3, OS-RC-2, and RERF-LC-AI in vitro. The correlation between the results in vitro assay and the radiation effects of nude mouse in vivo was investigated. METHODS: In vitro, the micronucleus frequency of 2 Gy radiation was scored in micronucleus assay. The survival fraction of 2 Gy radiation was obtained in MTT assay and clonogenic assay. The correlation between 3 assays was investigated. In vivo, cancer cells was inoculated to nude mouse and the tumor volume was measured at 3-7 days interval in control group and 10 Gy irradiated group. The tumor volume ratio in irradiated group to control group was calculated as a radiation effect in each cell lines, the correlation between this ratio in vivo and each value of 2 Gy radiation in vitro was studied. RESULTS: The correlation between micronucleus frequency and survival fraction in clonogenic assay was statistically significant (r = 0.941, p = 0.0169). But the correlation of the survival fraction between MTT assay and clonogenic assay is not statistically significant. The correlation between micronucleus frequency and the tumor volume ratio in vivo was statistically significant (r = 0.990, p = 0.0011). The correlation between survival fraction in clonogenic assay and the tumor volume ratio in vivo was also statistically significant (r = 0.914, p = 0.0298). However, the correlation between survival fraction in MTT assay and the tumor volume ratio in vivo was not statistically significant (r = 0.782, p = 0.118). CONCLUSION: In this 5 cell lines, micronucleus assay was most correlated to nude mouse radiation effect. This result suggested the possibility of micronucleus assay to be a better predictive method than clonogenic assay for radiosensitivity test.  相似文献   

16.
Recombinant human manganese superoxide dismutase (SOD) protects cells from oxidative damage and is known to ameliorate post-irradiation damage in mice exposed to whole body or localized chest irradiation. The concept behind the present experiments was to investigate whether it is possible to improve the outcome in leukemia following total body irradiation used as part of the conditioning prior to allogeneic bone marrow transplantation. We determined whether SOD protects leukemic cells from the effects of ionizing irradiation both in vitro and in vivo. Murine B cell leukemia (BCL1) cells, derived from tumor-bearing mice, were irradiated in vitro with or without SOD and injected into BALB/c mice. All mice receiving 10(4) unirradiated BLC1 cells developed leukemia and died within 19-39 days. In vitro exposure of BCL1 cells to 800 cGy or 1600 cGy abolished the potential to induce leukemia by inoculation with 10(4) or 10(6) BCL1 cells, respectively. Addition of SOD in vitro during irradiation increased the resistance of BCL1 cells to ionizing irradiation; all mice receiving 10(6) BCL1 cells previously exposed in vitro to 1200 cGy in the presence of SOD died of leukemia, whereas only 40% of mice receiving a similar inoculum of irradiated BCL1 cells died of leukemia. In contrast, when BCL1-bearing mice were irradiated with 600-800 cGy with or without intravenous injection of SOD (100 mg/kg) 30 minutes prior to irradiation, development of leukemia was unaffected. Residual leukemia cells following therapy were assessed by adoptive transfer of 10(5) spleen cells to secondary BALB/c recipients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The necessity for prolonged tissue culture manipulations limits the clinical application of many form of gene therapy in patients with malignancies. We hypothesized that granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA in a plasmid expression vector could be effectively introduced into resting tumor cells, without the need for tissue culture propagation prior to or following transfection, and that efficient expression of transgenic GM-CSF by the transfected tumor cells would confer an effective immune response against tumors. GM-CSF cDNA in expression vectors was coated onto gold particles and accelerated with a gene gun device into mouse and human tumor cells. Human tumor tissue transfected within 4 hr of surgery produced significant levels of transgenic human GM-CSF protein in vitro. Human GM-CSF was readily detectable in serum and at the injection site following subcutaneous implantation of these transfected tumor cells into nude mice. Transfected and irradiated murine B16 melanoma cells produced > or = 100 ng/ml murine GM-CSF/10(6) cells per 24 hr in vitro for at least 10 days. The antitumor efficacy of this nonviral approach was tested using irradiated B16 tumor cells that were transfected with mGM-CSF cDNA and injected into mice as tumor "vaccine". Subsequent challenge of these mice with nonirradiated, nontransfected B16 tumor cells showed that 58% of the animals wer protected from the tumor by the prior vaccine treatment. In contrast, only 2% of control animals were protected by prior treatment with irradiated B16 cells transfected with the vector containing the luciferase gene. These results suggest that particle-mediated transfection of fresh tumor explants with cytokine cDNA is an effective and clinically attractive approach for cancer therapy.  相似文献   

18.
Interference with polyamine transport and biosynthesis has emerged as an important anticancer strategy involving polyamine analogues and specific inhibitors of key biosynthetic enzymes. Because the prostate gland has a high polyamine content, by using the polyamine transporter for selective uptake into cancer cells, alkylating polyamines are likely to be highly effective against prostatic tumors. We have recently synthesized a novel class of spermine analogues, the lead compound of which has efficacy against human cancer cells (P. S. Callery et al., U. S. patent, 5,612,239, Issued March 17, 1997.). In this study, to investigate the potential therapeutic efficacy of the lead spermine analogue 1,12-diaziridinyl-4, 9-diazadodecane (BIS), against advanced prostate cancer, we examined the in vitro effect and in vivo efficacy of the compound in two androgen-independent human prostate cancer cell lines, PC-3 and DU-145. BIS exhibited a dose-dependent cytotoxic effect against prostate cancer cells via induction of apoptosis. Treatment of cells with BIS (1 microM) for 24 h resulted in a significant induction of apoptosis (24%). Exposure of BIS-treated PC-3 prostate cancer cells to gamma-irradiation resulted in a significant increase in the number of cells undergoing apoptosis and a subsequent decrease in the IC50. Furthermore, BIS treatment led to a significant enhancement of loss of clonogenic survival in irradiated prostate cancer cells (both PC-3 and DU-145). In vivo efficacy trials demonstrated a significant antitumor effect of BIS against both PC-3 and DU-145 tumor xenografts in severe combined immunodeficient mice in a dose-dependent pattern at maximally tolerated doses. Terminal transferase end-labeling analysis indicated that BIS-mediated tumor regression in vivo occurs via induction of apoptosis among prostatic tumor cells. These results suggest that the novel spermine analogue BIS: (a) has a potent antitumor effect against prostatic tumors via induction of apoptosis; and (b) increases the radiosensitivity of human prostate cancer cells by decreasing the apoptotic threshold to radiation. This study may have important clinical implications for the manipulation of this antitumor activity of the polyamine analogue for the optimization of the therapeutic efficacy of radiation in patients with advanced prostate cancer.  相似文献   

19.
Cytokine gene-engineered tumor vaccines are currently an area of intense investigation in both basic research and clinical medicine. Our efforts to utilize tumor vaccines in an immunotherapeutic manner involve canines with spontaneous tumors. We hypothesized that canine tumor cells, transfected with human granulocyte-macrophage colony-stimulating factor (hGM-CSF) cDNA in a plasmid vector, would prove nontoxic following intradermal administration, generate biologically relevant levels of protein, effect local histological changes at the sites of vaccination, and create a systemic antitumor response. Sixteen tumor-bearing dogs were admitted to a study of ex vivo gene therapy. Tumor tissue was surgically removed, enzymatically and mechanically dissociated, irradiated, transfected, and intradermally injected back into the patients. The dogs were vaccinated with primary autologous tumor cells transfected with hGM-CSF or a reporter control gene. hGM-CSF protein was detected (0.07 to 14.15 ng/vaccination site) at 24 hr postinjection and dramatic histological changes were observed, characterized by neutrophil and macrophage infiltration at the sites of injection of hGM-CSF-transfected tumor cells. This was in stark contrast to the lesser neutrophilic and eosinophilic infiltrates found at control vaccination sites. Objective evidence of an antitumor response was observed in three animals. These data, in a large animal translational model of spontaneous tumors, demonstrate in vivo biological activity of hGM-CSF-transfected autologous tumor cell vaccines.  相似文献   

20.
Currently, the contribution of cellular apoptotic sensitivity to tumor response after radiation therapy remains controversial. To address this issue, the survival of Rat-1 fibroblasts containing a 4-hydroxytamoxifen-regulated c-Myc allele, c-MycER (T. D. Littlewood et al., Nucleic Acids Res., 23: 1686-1690, 1995), after single and fractionated doses of radiation was investigated. This model system allows pharmacological regulation of apoptosis sensitivity in the same cells in vitro and as xenograft tumors derived from these cells in vivo (G. I. Evan et al., Cell, 69: 119-128, 1992; R. M. Alarcon et al., Cancer Res., 56: 4315-4319, 1996). Activating c-MycER in vitro resulted in marked sensitization of Rat-1 fibroblasts to the effects of both single-dose and fractionated irradiation as measured by the induction of apoptosis and clonogenic survival. Overexpression of the antiapoptosis protein Bcl-2 suppressed the induction of apoptosis and increased clonogenic survival in cells with activated c-Myc after single-dose and fractionated radiation. Systemic time-release implant delivery of 4-hydroxytamoxifen to severe combined immunodeficient mice bearing Rat-1-MycER tumors over the course of either single-dose (10 Gy) or fractionated (five fractions of 2 Gy) radiotherapy resulted in prolonged tumor growth delay relative to identical tumors from mice that received placebo implants. Furthermore, tumors derived from Rat-1-MycER cells that overexpressed Bcl-2 exhibited shorter tumor growth delays relative to similarly treated Rat-1-MycER tumors. The length of tumor growth delay after single-dose or fractionated radiotherapy strongly correlated with the extent of radiation-induced apoptosis in the xenograft tumors as measured by terminal deoxynucleotidyl transferase-mediated nick end labeling. These in vivo results provide direct evidence that increasing the sensitivity of tumor cells to die by apoptosis increases the efficacy of fractionated radiotherapy by reducing tumor cell clonogenic survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号