首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by microcephaly, a birdlike face, growth retardation, immunodeficiency, lack of secondary sex characteristics in females, and increased incidence of lymphoid cancers. NBS cells display a phenotype similar to that of cells from ataxia-telangiectasia patients, including chromosomal instability, radiation sensitivity, and aberrant cell-cycle-checkpoint control following exposure to ionizing radiation. A recent study reported genetic linkage of NBS to human chromosome 8q21, with strong linkage disequilibrium detected at marker D8S1811 in eastern European NBS families. We collected a geographically diverse group of NBS families and tested them for linkage, using an expanded panel of markers at 8q21. In this article, we report linkage of NBS to 8q21 in 6/7 of these families, with a maximum LOD score of 3.58. Significant linkage disequilibrium was detected for 8/13 markers tested in the 8q21 region, including D8S1811. In order to further localize the gene for NBS, we generated a radiation-hybrid map of markers at 8q21 and constructed haplotypes based on this map. Examination of disease haplotypes segregating in 11 NBS pedigrees revealed recombination events that place the NBS gene between D8S1757 and D8S270. A common founder haplotype was present on 15/18 disease chromosomes from 9/11 NBS families. Inferred (ancestral) recombination events involving this common haplotype suggest that NBS can be localized further, to an interval flanked by markers D8S273 and D8S88.  相似文献   

2.
Type 1 diabetes is a common polygenic disease. Fine mapping of polygenes by affected sibpair linkage analysis is not practical and allelic association or linkage disequilibrium mapping will have to be employed to attempt to detect founder chromosomes. Given prior evidence of linkage of the Jk-D18S64 region of chromosome 18q12-q21 to type 1 diabetes, we evaluated the 12 informative microsatellite markers in the region for linkage with disease by the transmission disequilibrium test (TDT) in a UK data set of type 1 diabetic families (n = 195). Increased transmission of allele 4 of marker D18S487 to affected children was detected (P = 0.02). Support for this was extended in a total of 1067 families from four different countries by isolating, and evaluating by the TDT, two novel microsatellites within 70 kb of D18S487. Evidence for linkage and association was P = 5 x 10(-5) and 3 x 10(-4), respectively. There was no evidence for increased transmission of associated alleles to nonaffected siblings. Analysis of an additional 390 families by the TDT did not extend the evidence further, and reduced support in the total 1457 families to P = 0.001 for linkage and P = 0.003 for association. However, evidence for linkage by affected sibpair allele sharing was strong (P = 3.2 x 10(-5)) in the second data set. Heterogeneity in TDT results between data sets was, in part, accounted for by the presence of more than one common disease-associated haplotype (allelic heterogeneity) which confounds the analysis of individual alleles by the TDT. Guidelines for strategies for the mapping of polygenes are suggested with the emphasis on collections of large numbers of families from multiple populations that should be as genetically homogeneous as possible.  相似文献   

3.
Several previous families with differing clinical and pathologic characteristics have demonstrated linkage to the 17q21-22 region. We have performed a linkage analysis with chromosome 17 markers on three families showing autosomal dominant inheritance of non-Alzheimer dementia and 60 kindreds with late-onset familial Alzheimer's disease (FAD). Family A shows unequivocal evidence of linkage with a maximum lod score of 5.0 for marker D17S934 (theta = 0.001). This family has an unusual syndrome of a schizophrenia-like psychosis beginning in the fifth or sixth decade followed by severe dementia with an average disease duration of 13.8 years. Neuropathology from five autopsies in this family has shown marked neurofibrillary tangle formation (NFT), degeneration of the amygdala, and no amyloid plaques. This confirms the presence of a gene associated with dementia on 17q and extends the related phenotype to include schizophrenia-like symptoms and classic NFT pathology. A second family with early aphasia progressing to dementia and cortical-basal ganglion-like degeneration also has suggestive evidence for linkage to 17q. A third family with very early-onset dementia (mean, 31 years) and nonspecific pathology can be excluded from the 17q region and emphasizes additional genetic heterogeneity in non-Alzheimer hereditary dementia. Finally, we also present evidence against linkage to D17S579 in the set of 60 families with late-onset FAD, providing further evidence that the chromosome 17 gene is unlikely to be involved in the pathogenesis of typical AD.  相似文献   

4.
Haplotype analysis in a collaborative collection of 143 families with juvenile-onset neuronal ceroid lipofuscinosis (JNCL) or Batten (Spielmeyer-Vogt-Sj?gren) disease has permitted refined localization of the disease gene, CLN3, which was assigned to chromosome 16 in 1989. Recombination events in four maternal meioses delimit new flanking genetic markers for CLN3 which localize the gene to the chromosome interval 16p12.1-11.2 between microsatellite markers D16S288 and D16S383. This narrows the position of CLN3 to a region of 2.1 cM, a significant reduction from the previous best interval. Using haplotypes, analysis of the strong linkage disequilibrium that exists between genetic markers within the D16S288-D16S383 interval and CLN3 shows that CLN3 is in closest proximity to loci D16S299 and D16S298. Analysis of markers across the D16S288-D16S383 region in four families with a variant form of JNCL characterized histologically by cytosomal granular osmiophilic deposits (GROD) has excluded linkage of the gene locus to the CLN3 region of chromosome 16, suggesting that JNCL with GROD is not an allelic form of JNCL.  相似文献   

5.
Progressive myoclonus epilepsy of the Lafora type (Lafora's disease) is an autosomal recessive disease characterized by epilepsy, myoclonus, dementia, and periodic acid-Schiff-positive intracellular inclusion bodies. The inclusion deposits consist of branched polysaccharides (polyglucosans) but the responsible biochemical defect has not been identified. Onset is during late childhood or adolescence and the disease leads to a fatal outcome within a decade of first symptoms. We studied nine families in which Lafora's disease had been proven by biopsy in at least one member. In order to locate the responsible gene, we screened the human genome with microsatellite markers spaced an average of 13 cM. We used linkage analysis in all nine families and homozygosity mapping in four consanguineous families to define the Lafora's disease gene region. Two point linkage analysis resulted in a total peak lod score of 10.54 for marker D6S311. Six additional chromosome 6q23-25 microsatellites yielded lod scores ranging from 5.92 to 9.60 at theta m = f = 0. An extended pedigree with five affected members independently proved linkage with peak lod scores over 3.8 at theta m = f = 0 for D6S292, D6S403, and D6S311. The multipoint one-lod-unit support interval covered a 2.5 cM region surrounding D6S403. Homozygosity mapping defined a 17 cM region in chromosome 6q23-25 flanked by D6S292 and D6S420 that contains the Lafora's disease gene.  相似文献   

6.
Affected-sib-pair analyses were performed using 104 Caucasian families to map genes that predispose to insulin-dependent diabetes mellitus (IDDM). We have obtained linkage evidence for D6S446 (maximum lod score [MLS] = 2.8) and for D6S264 (MLS = 2.0) on 6q25-q27. Together with a previously reported data set, linkage can be firmly established (MLS = 3.4 for D6S264), and the disease locus has been designated IDDM8. With analysis of independent families, we confirmed linkage evidence for the previously identified IDDM3 (15q) and DDM7 (2q). We also typed additional markers in the regions containing IDDM3, IDDM4, IDDM5, and IDDM8. Preliminary linkage evidence for a novel region on chromosome 4q (D4S1566) has been found in 47 Florida families (P < .03). We also found evidence of linkage for two regions previously identified as potential linkages in the Florida subset: D3S1303 on 3q (P < .04) and D7S486 on 7q (P < .03). We could not confirm linkage with eight other regions (D1S191, D1S412, D4S1604, D8S264, D8S556, D10S193, D13S158, and D18S64) previously identified as potential linkages.  相似文献   

7.
Dominant optic atrophy, Kjer type, is an autosomal dominant disorder causing progressive loss of visual acuity and colour vision from early childhood. The gene (OPA1) has variable expressivity, a penetrance of 0.98, and the locus has been localised to 3q28-29. We have genotyped nine British families with the disease using 12 polymorphic microsatellite markers from this region. Linkage and haplotype analysis shows the OPA1 gene to be located in a 2.3 cM interval between markers D3S1601 and D3S2748. One family showed no evidence of linkage with the chromosome 3 markers, suggesting for the first time that locus heterogeneity for this disease may exist, although exclusion for linkage is based on unaffected subjects. In addition, analysis of recombinants has enabled us to order the 12 markers along chromosome 3.  相似文献   

8.
Hyperparathyroidism-jaw tumor syndrome (HPT-JT) is an autosomal dominant disease characterized by the development of multiple parathyroid adenomas and multiple fibro-osseous tumors of the maxilla and mandible. Some families have had affected members with involvement of the kidneys, variously reported as Wilms tumors, nephroblastomas, and hamartomas. The HPT-JT gene (HRPT2) maps to chromosome 1q25-q31. We describe further investigation of two HPT-JT families (K3304 and K3349) identified through the literature. These two expanded families and two previously reported families were investigated jointly for linkage with 21 new, closely linked markers. Multipoint linkage analysis resulted in a maximum LOD score of 7.83 (at recombination fraction 0) for markers D1S2848-D1S191. Recombination events in these families reduced the HRPT2 region to approximately 14.7 cM. In addition, two of these four study families (i.e., K3304 and K11687) share a 2.2-cM length of their (expanded) affected haplotype, indicating a possible common origin. Combining the linkage data and shared-haplotype data, we propose a 0.7-cM candidate region for HRPT2.  相似文献   

9.
10.
Autosomal dominant North Carolina macular dystrophy (NCMD) or central areolar pigment epithelial dystrophy (CAPED) is an allelic disorder that maps to an approximately 7.2 cM interval between DNA markers at D6S424 and D6S1671 on 6q14-q16.2. The further refinement of the disease locus has been hindered by the lack of additional recombination events involving the critical region. In this study, we have identified three multigeneration families of German descent who express the NCMD phenotype. Genotyping was carried out with a series of markers spanning approximately 53 cM around the NCMD locus, MCDR1. Genetic linkage between the markers and the disease phenotype in each of the families could be shown. Disease associated haplotypes were constructed and provide evidence for an ancestral founder for the German NCMD families. This haplotype analysis suggests that a 4.0 cM interval flanked by markers at D6S249 and D6S475 harbours the gene causing NCMD, facilitating further positional cloning approaches.  相似文献   

11.
Hereditary pancreatitis (HP) is the second most common cause of chronic childhood pancreatitis in the United States. Mutations in the cationic trypsinogen gene on chromosome 7 are known to cause HP. We identified four families in West Virginia with symptoms consistent with HP. To determine whether members of these families had defects in the trypsinogen gene, we tested for linkage between the HP gene and simple tandem repeat markers on chromosome 7q and screened for a specific mutation in the cationic trypsinogen gene. Two-point linkage analysis indicated that the disease gene is closely linked to three 7q markers (D7S661, D7S2511, and D7S1805). Restriction fragment length polymorphism analysis showed that all clinically affected members and nonpenetrant carriers from the four families carried a G to A mutation in the third exon of the trypsinogen gene. These findings indicate that this mutation is the cause of HP in the families in our study. The observation that most individuals who carry the mutation have symptoms of HP is consistent with the high but incomplete penetrance of the trait. The presence of a single mutation and a common linked haplotype indicates that the defective allele arose in an ancestor common to all four families.  相似文献   

12.
Darier's disease (DD) is an autosomal dominant genodermatosis characterized by epidermal acantholysis and dyskeratosis. We have performed genetic linkage studies in 10 families with DD (34 affected) by analyzing 14 polymorphic microsatellite markers. Our results confirm recent reports mapping the DD gene to chromosome 12q23-q24.1. Haplotype analysis of recombinant chromosomes in our families, along with previously reported data, narrow the location of the DD gene to a 5 cM interval flanked by the loci D12S354 and D12S84/D12S105. This localization allowed exclusion of two known genes, PLA2A and PAH, as candidate loci for DD. Three other gene loci (PPP1C, PMCH, PMCA1), mapping in 12q21-q24, remain potential candidates.  相似文献   

13.
Hereditary or primary lymphedema is a developmental disorder of the lymphatic system which leads to a disabling and disfiguring swelling of the extremities. Hereditary lymphedema generally shows an autosomal dominant pattern of inheritance with reduced penetrance, variable expression and variable age at onset. Three multigeneration families demonstrating the phenotype of hereditary lymphedema segregating as an autosomal dominant trait with incomplete penetrance were genotyped for 366 autosomal markers. Linkage analysis yielded a two-point LOD score of 6.1 at straight theta = 0. 0 for marker D5S1354 and a maximum multipoint LOD score of 8.8 at marker D5S1354 located at chromosome 5q34-q35. Linkage analysis in two additional families using markers from the linked region showed one family consistent for linkage to distal chromosome 5. In the second family, linkage to 5q was excluded for all markers in the region with LOD scores Z < -2.0. The vascular endothelial growth factor C receptor ( FLT4 ) was mapped to the linked region, and partial sequence analysis identified a G-->A transition at nucleotide position 3360 of the FLT4 cDNA, predicting a leucine for proline substitution at residue 1126 of the mature receptor in one nuclear family. This study localizes a gene for primary lymphedema to distal chromosome 5q, identifies a plausible candidate gene in the linked region, and provides evidence for a second, unlinked locus for primary lymphedema.  相似文献   

14.
Autosomal dominant medullary cystic kidney disease (ADMCKD; synonym: medullary cystic disease, MCD) is an autosomal dominant kidney disorder, sharing morphological and clinical features with recessive juvenile nephronophthisis (NPH), such as reduced urinary concentration ability and multiple renal cysts at the corticomedullary junction. While in NPH end-stage renal disease (ESRD) occurs in adolescence, ADMCKD leads to ESRD in adulthood. Recently a gene locus for ADMCKD has been localized to chromosome 1q21 in two large Cypriot families. This prompted us to examine linkage in three ADMCKD-families, using the same set of polymorphic microsatellite markers spanning the critical region on chromosome 1q21. Haplotype analysis revealed that none of the three families showed linkage to this locus, thus demonstrating evidence for genetic locus heterogeneity. Additional linkage analysis studies need to be performed in order to identify further gene loci cosegregating with this autosomal dominant kidney disorder.  相似文献   

15.
Primary open-angle glaucoma (POAG) can be subdivided into two groups according to age of onset: (1) the more prevalent middle to late-age-onset chronic open-angle glaucoma (COAG) diagnosed after age 40, and (2) the less common form, juvenile open-angle glaucoma (JOAG), which occurs between 3 years of age and early adulthood. Susceptibility to either COAG or JOAG has been found to be inherited. The discovery of several genetic markers spanning the region 1q21-q24 in genetic linkage with autosomal dominant juvenile open-angle glaucoma (adJOAG) represents a major breakthrough towards the localisation of gene(s) responsible for the disease. Linkage analysis is a powerful means of distinguishing disease loci in large families with dominant disease. However the size of the group of families may represent a crucial factor for the linkage analysis. Sardinia is an island with a relatively isolated ethnic group showing a relatively high frequency of ad JOAG and COAG (Fossarello et al, 1994) and it is genetically more homogeneous than most Western populations. Therefore it represents an ideal ethnic group to search for linkage. We identified 18 families affected by POAG in which the disease appears to be inherited as autosomic dominant trait. In all families but two, occurrence of both JOAG and COAG in the same kindred was observed. Identification of adPOAG locus was performed by linkage analysis using 9 microsatellite markers spanning the region 1q21-q24. No significant linkage was observed. Our findings provide further evidence for genetic heterogeneity in autosomal dominant primary open angle glaucoma, even in a geographic area where a relatively homogeneous genetic background exists.  相似文献   

16.
DPC4 and DCC, putative tumor suppressor genes implicated in the genesis of several types of human cancer, lie on the long arm of human chromosome 18. We examined 200 primary breast cancers for allelic losses on chromosome 18, using 15 microsatellite markers distributed along the long arm. Allelic loss was detected most frequently (29-30%) at loci mapped to 18q21. Deletion mapping of the 34 tumors showing partial or interstitial deletions identified a commonly deleted region within the 4-cM interval flanked by D18S474 and D18S487 at 18q21.1-q21.3. Although this interval included the DPC4 and DCC genes, we excluded DPC4 from candidacy when polymerase chain reaction-single-strand conformation polymorphism analysis of each exon failed to detect abnormalities in any of the 54 breast cancers that exhibited loss of heterozygosity involving 18q. Allelic loss on 18q was found more frequently in tumors of the solid tubular histological type (24 of 55, 44%) than in other types (24 of 113, 21%) (P = 0.0049). The results suggest that a tumor suppressor gene located within the 4-cM region at 18q21, either DCC or another gene not yet identified, may play a role in the development of some sporadic breast cancers, particularly those of the solid tubular type.  相似文献   

17.
PLO-SL (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy) is a recessively inherited disorder characterized by systemic bone cysts and progressive presenile frontal-lobe dementia, resulting in death at <50 years of age. Since the 1960s, approximately 160 cases have been reported, mainly in Japan and Finland. The pathogenesis of the disease is unknown. In this article, we report the assignment of the locus for PLO-SL, by random genome screening using a modification of the haplotype-sharing method, in patients from a genetically isolated population. By screening five patient samples from 2 Finnish families, followed by linkage analysis of 12 Finnish families, 3 Swedish families, and 1 Norwegian family, we were able to assign the PLO-SL locus to a 9-cM interval between markers D19S191 and D19S420 on chromosome 19q13. The critical region was further restricted, to approximately 1.8 Mb, by linkage-disequilibrium analysis of the Finnish families. According to the haplotype analysis, one Swedish and one Norwegian PLO-SL family are not linked to the chromosome 19 locus, suggesting that PLO-SL is a heterogeneous disease. In this chromosomal region, one potential candidate gene for PLO-SL, the gene encoding amyloid precursor-like protein 1, was analyzed, but no mutations were detected in the coding region.  相似文献   

18.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease with variable expression and incomplete penetrance, characterized by mucocutaneous pigmentation and hamartomatous polyposis. Patients with PJS have increased frequency of gastrointestinal and extraintestinal malignancies (ovaries, testes, and breast). In order to map the locus (or loci) associated with PJS, we performed a genomewide linkage analysis, using DNA polymorphisms in six families (two from Spain, two from India, one from the United States, and one from Portugal) comprising a total of 93 individuals, including 39 affected and 48 unaffected individuals and 6 individuals with unknown status. During this study, localization of a PJS gene to 19p13.3 (around marker D19S886) had been reported elsewhere. For our families, marker D19S886 yielded a maximum LOD score of 4.74 at a recombination fraction (theta) of .045; multipoint linkage analysis resulted in a LOD score of 7.51 for the interval between D19S886 and 19 pter. However, markers on 19q13.4 also showed significant evidence for linkage. For example, D19S880 resulted in a maximum LOD score of 3.8 at theta = .13. Most of this positive linkage was contributed by a single family, PJS07. These results confirm the mapping of a common PJS locus on 19p13.3 but also suggest the existence, in a minority of families, of a potential second PJS locus, on 19q13.4. Positional cloning and characterization of the PJS mutations will clarify the genetics of the syndrome and the implication of the gene(s) in the predisposition to neoplasias.  相似文献   

19.
Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive primary disease of muscle which is usually inherited as an autosomal dominant disorder. FSHD has been localized to the long arm of chromosome 4, specifically to the 4q3.5-qter region. Initially published linkage studies showed no evidence for heterogeneity in FSHD. In the present study we have examined individuals in seven FSHD families. Two-point lod scores show significant evidence for linkage for D4S163 (lod score 3.04 at recombination fraction .21) and D4S139 (lod score 3.84 at recombination fraction .20). D4S171 also gave a positive score (lod score 2.56 at recombination fraction .24). Significant evidence for heterogeneity was found for each of the three markers. Multipoint linkage analysis in this region resulted in a peak multipoint lod score of 6.47. The multipoint analysis supported the two-point studies with odds of 20:1 showing linkage and heterogeneity over linkage and homogeneity. Five of the seven families gave a posterior probability of > 95% of being of the linked type, while two families appeared unlinked to this region of 4q (P < .01%). Individuals in the two unlinked families met the clinical criteria for the diagnosis of FSHD, including facial weakness, clavicular flattening, scapula winging, proximal muscle weakness, and myopathic changes on muscle biopsies without inflammatory or mitochondrial pathology. This study demonstrates genetic heterogeneity in FSHD and has important implications for both genetic counseling and the elucidation of the etiology of FSHD.  相似文献   

20.
Myopia, or nearsightedness, is the most common eye disorder worldwide. "Pathologic" high myopia, or myopia of <=-6.00 diopters, predisposes individuals to retinal detachment, macular degeneration, cataract, or glaucoma. A locus for autosomal dominant pathologic high myopia has been mapped to 18p11.31. We now report significant linkage of high myopia to a second locus at the 12q21-23 region in a large German/Italian family. The family had no clinical evidence of connective-tissue abnormalities or glaucoma. The average age at diagnosis of myopia was 5.9 years. The average spherical-component refractive error for the affected individuals was -9.47 diopters. Markers flanking or intragenic to the genes for the 18p locus, Stickler syndromes type I and II (12q13.1-q13.3 and 6p21.3), Marfan syndrome (15q21.1), and juvenile glaucoma (chromosome 1q21-q31) showed no linkage to the myopia in this family. The maximum LOD score with two-point linkage analysis in this pedigree was 3.85 at a recombination fraction of .0010, for markers D12S1706 and D12S327. Recombination events identified markers D12S1684 and D12S1605 as flanking markers that define a 30.1-cM interval on chromosome 12q21-23, for the second myopia gene. These results confirm genetic heterogeneity of myopia. The identification of this gene may provide insight into the pathophysiology of myopia and eye development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号