首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, size of a PV/wind integrated hybrid energy system with battery storage is optimized under various loads and unit cost of auxiliary energy sources. The optimization is completed by a simulation based optimization procedure, OptQuest, which integrates various heuristic methods. In the study, the main performance measure is the hybrid energy system cost. And the design parameters are PV size, wind turbine rotor swept area and the battery capacity. The case study is realized for Izmir Institute of Technology Campus Area, Urla, Turkey. The simulation model of the system is realized in ARENA 12.0, a commercial simulation software, and is optimized using the OptQuest tool in this software. Consequently, the optimum sizes of PV, wind turbine and battery capacity are obtained under various auxiliary energy unit costs and two different loads. The optimum results are confirmed using Loss of Load Probability (LLP) and autonomy analysis. And the investment costs are investigated how they are shared among those four energy sources at the optimum points.  相似文献   

2.
A.N. Celik   《Renewable Energy》2006,31(1):105-118
This article presents a simplified algorithm to estimate the yearly wind fraction, the fraction of energy demand provided by wind generator, in a hybrid-wind system (typically a PV-wind) with battery storage. The novel model is drawn based on the simulation results, using 8-year long measured hour-by-hour wind speed data from five different locations throughout the world. The simulation program simulates the battery state of voltage (SoV) and is able to predict the wind fraction for a period of time, typically monthly or yearly. The yearly wind fraction values obtained from the simulations are plotted against the ratio of energy to load for various battery storage capacities to obtain wind fraction curves. The novel method correlates the yearly wind fraction with the parameters of the Weibull distribution function, thus, offering a general methodology. The yearly wind fraction curves are mathematically represented using a 2-parameter model. The novel algorithm is validated by comparing the simulated wind fraction values with those calculated from the simplified algorithm. The standard error of estimation of the WF from the simplified algorithm is further presented for each battery capacity.  相似文献   

3.
陈习坤  汤双清 《节能》2005,(1):22-25
本文提出了一种采用飞轮储能电池来充当能量储存器和电能质量调节器的独立运行式风力发电 系统,它由新型飞轮储能电池、风力发电机系统两大部分组成。文中分析了飞轮储能电池的储能和调节 电能质量的作用,详细分析了直流侧电压的调节方法,利用能量平衡原理推导出了前馈参数(iL-iG)与 定子电流iq的关系,并给出了控制方法。仿真结果证明了该系统具有优越的储能和改善电能质量的效 果。  相似文献   

4.
This paper describes the development of a general probabilistic model of an autonomous wind energy conversion system (WECS) composed of several wind turbines (wind farm) connected to a load and a battery storage. The proposed technique allows the simulation of wind farms containing identical or different wind turbines types and considers a bidirectional flow of power in and out of the battery. The model is based upon a simple procedure to estimate the joint probability distribution function of the total available wind power and that of the turbines operating modes due to hardware failure. A methodology is also developed to use the proposed model to determine an upper limit on the size of the battery storage required for a given number of turbines to satisfy the load with a certain expected energy not supplied (EENS). The model can also be used to evaluate the energy purchased from or injected to the grid in the case of grid-connected systems  相似文献   

5.
电池储能系统(battery energy storage system,BESS)在风储联合应用中具有多种功能,利用电池储能系统提高风电并网调度运行能力是当前研究的热点之一.文章基于我国北方某风电场历史运行数据与预测数据,依据预测误差评价指标和风电场预报考核指标的综合评价方法对风电场预测数据进行分析研究,归纳了预测误差的概率分布特征;提出利用电池储能系统提高风电跟踪计划出力能力,统计并量化出电池储能系统用于跟踪计划出力场合的作用范围;通过仿真验证电池储能系统在风储联合系统中提高风电跟踪计划出力控制策略的有效性和可行性.  相似文献   

6.
M. T. Iqbal   《Renewable Energy》2003,28(4):511-522
This paper describes simulation results of a small 500 W wind fuel cell hybrid energy system. The system consists of a Southwest Wind Power Inc. AIR 403 wind turbine, a Proton Exchange Membrane Fuel Cell (PEMFC) and an electrolyzer. Dynamic modeling of various components of this small isolated system is presented. Simulink is used for the dynamic simulation of this nonlinear 48 V hybrid energy system. Transient responses of the system to a step change in the load current and wind speed in a number of possible situations are presented. Analysis of simulation results and limitations of a wind fuel cell hybrid energy system are discussed.  相似文献   

7.
风力发电具有明显的随机性,间歇性,不可控性和反调峰特性,风力发电的大规模并网给电网调峰和稳定,安全运行带来了巨大压力,造成弃风限电现象愈加严重,严重影响了风力资源的有效利用和经济效益.全钒液流电池储能电站在能量管理系统的调度下,对风力发电输出功率进行平滑,配合风电场功率预报系统,提高风电场跟踪计划发电能力,改善了风电场并网电能质量,降低了对电网的冲击与影响,同时也提高了风电场输出功率可控性,有利于提高电网对风电的接纳能力.国电龙源卧牛石风电场配套的5 MW/10 MW∙h全钒液流电池储能系统为目前世界上最大规模的全钒液流电池储能系统.本文介绍了该全钒液流电池技术特点和储能系统的设计,成组方案及功能,并对储能技术在可再生能源发展中的作用进行了展望.  相似文献   

8.
A comprehensive supervisor control for a hybrid system that comprises wind and photovoltaic generation subsystems, a battery bank, and an ac load is developed in this paper. The objectives of the supervisor control are, primarily, to satisfy the load power demand and, second, to maintain the state of charge of the battery bank to prevent blackout and to extend the life of the batteries. For these purposes, the supervisor controller determines online the operation mode of both generation subsystems, switching from power regulation to maximum power conversion. Decision criteria for the supervisor based on measurable system variables are presented. Finally, the performance of the supervisor controller is extensively assessed through computer simulation using a comprehensive nonlinear model of the plant.  相似文献   

9.
为了增加电池储能系统针对大规模风电并网对电网系统的友好性,降低风电功率波动对电网的不利影响,本文提出以电池荷电状态和风电功率为反馈量,改变平抑时间常数和电池储能系统充放电目标功率为目标的平抑风电功率波动的自适应控制策略。经仿真验证,上述策略能有效避免电池的荷电状态大幅波动,延长电池使用寿命,从而减小电池储能系统的安装容量,最大限度地发挥电池储能系统的作用。  相似文献   

10.
根据光伏电池的数学模型在MATLAB上建立了仿真模块,同时利用MATLAB里已有的异步风力发电机模型及蓄电池模型构建了风光互补的微电网系统。采用直流微电网与交流微电网混合的方式对直流负荷和交流负荷供电,在交流侧,仅采用一个独立的公共DC/AC变换器,在满足了负荷需求的同时节约了变换器资源。针对微电网的并网运行模式,建立了PQ控制模型;针对微电网的孤岛运行模式,采用了V/f控制方法,在电感电流内环电压外环的基础上,加入了负载扰动前馈补偿,同时,对逆变器连续状态空间表达式进行离散化,建立了控制模型。最后,通过对微电网并网运行和孤岛运行时的实例仿真,验证了控制方法的可行性及有效性。  相似文献   

11.
This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design parameters. In this study, the response surface, output performance measure, is the hybrid system cost, and the design parameters are the PV size, wind turbine rotor swept area and the battery capacity. The case study is realized in ARENA 10.0, a commercial simulation software, for satisfaction of electricity consumption of the global system for mobile communications (GSM) base station at Izmir Institute of Technology Campus Area, Urla, Turkey. As a result, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained to be 3.95 m2, 29.4 m2, 31.92 kWh, respectively. These results led to $37,033.9 hybrid energy system cost, including auxiliary energy cost. The optimum result obtained by RSM is confirmed using loss of load probability (LLP) and autonomy analysis.  相似文献   

12.
A techno-economic analysis for autonomous small scale photovoltaic–wind hybrid energy systems is undertaken for optimisation purposes in the present paper. The answer to the question whether a hybrid photovoltaic–wind or a single photovoltaic or wind system is techno-economically better is also sought. Monthly analysis of 8 year long measured hourly weather data shows that solar and wind resources vary greatly from one month to the next. The monthly combinations of these resources lead to basically three types of months: solar-biased month, wind-biased month and even month. This, in turn, leads to energy systems in which the energy contributions from photovoltaic and wind generators vary greatly. The monthly and yearly system performances simulations for different types of months show that the system performances vary greatly for varying battery storage capacities and different fractions of photovoltaic and wind energy. As well as the system performance, the optimisation process of such hybrid systems should further consist of the system cost. Therefore, the system performance results are combined with system cost data. The total system cost and the unit cost of the produced electricity (for a 20 year system lifetime) are analysed with strict reference to the yearly system performance. It is shown that an optimum combination of the hybrid photovoltaic–wind energy system provides higher system performance than either of the single systems for the same system cost for every battery storage capacity analysed in the present study. It is also shown that the magnitude of the battery storage capacity has important bearings on the system performance of single photovoltaic and wind systems. The single photovoltaic system performs better than a single wind system for 2 day storage capacity, while the single wind system performs better for 1.25 day storage capacity for the same system cost.  相似文献   

13.
14.
As China vigorously promotes the development of new energy, photovoltaic power curtailment and wind power curtailment have been effectively resolved. At the same time, the yield from new energy power generation is becoming an important factor that affects the scale of investment in new energy. This paper focuses on the weather risks faced by wind power producers. By studying current research on weather index insurance in China and abroad, the functions and design methods for weather index insurance have been clarified. In addition, the feasibility of wind-power generation index insurance is discussed. The calculation methods for wind power generation index and the weather index insurance pricing methods for wind power enterprises are proposed. A weather index insurance model for wind power generation was established. The rationality and feasibility of the weather index insurance model proposed in this paper were verified using data from an existing power plant. The simulation results show that wind power enterprises can effectively avoid economic losses caused by weather risks through weather index insurance.  相似文献   

15.
This paper presents a simplified algorithm to estimate the monthly performance of autonomous small-scale wind energy systems with battery storage. The novel model is drawn based on the simulation results, using eight-year long hour-by-hour measured wind speed data from five different locations throughout the world. An hourly constant load profile is used. The renewable energy simulation program (ARES) of the Cardiff School of Engineering is used. The ARES simulates the battery state of voltage (SoV) and is able to predict the system performance.The monthly performance values obtained from the simulations are plotted against increasing energy to load ratios for varying battery storage capacities to obtain performance curves. The novel method correlates the monthly system performance with the parameters of the Weibull distribution function, thus offering a universal use. The monthly performance curves are mathematically represented using a 2-parameter function. The novel method is validated by comparing the simulated performance values with those estimated from the simplified algorithm. The standard errors calculated in estimation of the system performance using the simplified algorithm are further presented for each battery capacity.  相似文献   

16.
This paper analyzed the potential implementation of hybrid photovoltaic (PV)/wind turbine/diesel system in southern city of Malaysia, Johor Bahru. HOMER (hybrid optimization model for electric renewable) simulation software was used to determine the technical feasibility of the system and to perform the economical analysis of the system. There were seven different system configurations, namely stand-alone diesel system, hybrid PV–diesel system with and without battery storage element, hybrid wind–diesel system with and without battery storageelement, PV–wind–diesel system with and without storage element, will be studied and analyzed. The simulations will be focused on the net present costs, cost of energy, excess electricity produced and the reduction of CO2 emission for the given hybrid configurations. At the end of this paper, PV–diesel system with battery storage element, PV–wind–diesel system with battery storage element and the stand-alone diesel system were analyzed based on high price of diesel.  相似文献   

17.
This paper deals with the control of the output power of a solar/wind stand-alone system. The control system regulates the generation of the wind subsystem in order to satisfy, jointly with the photovoltaic generation subsystem, the load and battery charge power demand. The controller is designed using a theoretical framework that unifies passivity and sliding mode techniques. The resultant control law does not need wind measurement and only relies on rotational speed and current measurements. An analysis of the acceleration estimate error is carried out and a countermeasure to compensate its effects is proposed. Finally, the performance of the controller is assessed through computer simulation, using a comprehensive nonlinear model of the plant.  相似文献   

18.
Lead–acid batteries used in hybrid solar–wind power generation systems operate under very specific conditions, and it is often very difficult to predict when the energy will be extracted from or supplied to the battery. Owing to the highly variable working conditions, no battery model has achieved a good compromise between the complexity and precision. This paper presents a simple mathematical approach to simulate the lead–acid battery behaviors in stand alone hybrid solar–wind power generation systems. Several factors that affect the battery behaviors have been taken into account, such as the current rate, the charging efficiency, the self-discharge rate, as well as the battery capacity. Good agreements were found between the predicted results and the field measured data of a hybrid solar–wind project. At last, calculated from 1-year field data with the simulation model, the time-series battery state-of-charge (SOC) has been statistically analyzed considering the monthly and hourly variations as well as the probability distributions. The results have shown the battery working states in the real hybrid solar–wind power generation system.  相似文献   

19.
M.  S.  J.C.  J.L. 《Renewable Energy》2006,31(9):1455-1470
Wind energy is a prominent area of application of variable speed generators operating on the constant grid frequency. A modern wind energy system of this type consists of a surface mounted permanent-magnet generator with a frequency converter, which allows variable speed operation. The maximum power capability of the wind energy system is limited by the grid inverter. The theoretical formulation for active and reactive power limits is given. This formulation is used to set power reference limits to the inverter. Two different regions are distinguished depending on the tolerable Ac current harmonic distortion. Experimental results in a variable frequency wind energy generation system are shown.  相似文献   

20.
In this paper, we perform Simulated Annealing (SA) algorithm for optimizing size of a PV/wind integrated hybrid energy system with battery storage. The proposed methodology is a heuristic approach which uses a stochastic gradient search for the global optimization. In the study, the objective function is the minimization of the hybrid energy system total cost. And the decision variables are PV size, wind turbine rotor swept area and the battery capacity. The optimum result obtained by SA algorithm is compared with our former study’s result. Consequently, it is come up with that the SA algorithm gives better result than the Response Surface Methodology (RSM). The case study is realized for a campus area in Turkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号