首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
BACKGROUND: The effectiveness of the analysis of cell wall‐bound hydroxycinnamic acids and the composition of lignin to evaluate the in vivo digestibility of a silage collection with unknown botanical composition was evaluated. RESULTS: Syringyl units content and total etherified phenols showed the highest correlation coefficients with in vivo dry matter digestibility (IVDMD) (r = ? 0.792 and r = ? 0.703, respectively), while guaiacyl units and total phenols showed the highest correlation coefficients with in vivo organic matter digestibility (IVOMD) (r = ? 0.871 and r = ? 0.817, respectively). Using the above‐mentioned chemical parameters, 10 equations were also developed to predict in vivo digestibility. The prediction of IVDMD produced a high adjusted R2 value (0.710) using syringyl, total lignin, etherified total phenols, esterified ferulic acid and total phenol content as predictors. The prediction of IVOMD produced a higher adjusted R2 value (0.821) using guaiacyl, total phenols, total ferulic acid and etherified p‐coumaric acid content as predictors. CONCLUSION: Cell wall digestibility depends on a multiplicity of factors and it is not possible to attribute a causal effect on in vivo digestibility to any single factor. However, syringyl and guaiacyl content and etherified phenols emerge as good predictors of digestibility. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Total mixed rations containing conventional forage sorghum, brown midrib (bmr)-6 forage sorghum, bmr-18 forage sorghum, or corn silage were fed to Holstein dairy cows to determine the effect on lactation, ruminal fermentation, and total tract nutrient digestion. Sixteen multiparous cows (4 ruminally fistulated; 124 d in milk) were assigned to 1 of 4 diets in a replicated Latin square design with 4-wk periods (21-d adaptation and 7 d of collection). Diets consisted of 40% test silage, 10% alfalfa silage, and 50% concentrate mix (dry basis). Acid detergent lignin concentration was reduced by 21 and 13%, respectively, for the bmr-6 and bmr-18 sorghum silages when compared with the conventional sorghum. Dry matter intake was not affected by diet. Production of 4% fat-corrected milk was greatest for cows fed bmr-6 (33.7 kg/d) and corn silage (33.3 kg/d), was least for cows fed the conventional sorghum (29.1 kg/d), and was intermediate for cows fed the bmr-18 sorghum (31.2 kg/d), which did not differ from any other diet. Total tract neutral detergent fiber (NDF) digestibility was greatest for the bmr-6 sorghum (54.4%) and corn silage (54.1%) diets and was lower for the conventional (40.8%) and bmr-18 sorghum (47.9%) diets. In situ extent of NDF digestion was greatest for the bmr-6 sorghum (76.4%) and corn silage (79.0%) diets, least for the conventional sorghum diet (70.4%), and intermediate for the bmr-18 sorghum silage diet (73.1%), which was not different from the other diets. Results of this study indicate that the bmr-6 sorghum hybrid outperformed the conventional sorghum hybrid; the bmr-18 sorghum was intermediate between conventional and bmr-6 in most cases. Additionally, the bmr-6 hybrid resulted in lactational performance equivalent to the corn hybrid used in this study. There are important compositional differences among bmr forage sorghum hybrids that need to be characterized to predict animal response accurately.  相似文献   

3.
    
《Journal of dairy science》2022,105(7):5776-5785
Sorghum forage is an important alternative to high-quality forage in regions where climatic and soil conditions are less desirable for corn production for silage and producing comparable nutritive value is challenging. The objective of this experiment was to assess the effects of season (spring vs. summer), sorghum variety type (forage sorghum vs. sorghum-sudangrass), and trait [brown midrib (BMR) vs. non-BMR] on dry matter (DM) yield, nutrient composition, and predicted intake and milk yield of whole-plant sorghum forage grown in Florida from 2008 to 2019. Whole-plant sorghum forage was harvested at a targeted 32% of DM, and each year, spring (April) and summer (July) trials were established. A total of 300 forage sorghum and 137 sorghum-sudangrass hybrids were tested for a total of 437 hybrids, of which 199 hybrids contained the BMR trait and 238 were non-BMR. An interaction between season and sorghum variety type was observed for DM yield. Dry matter yield was greater for the spring season than the summer season, with sorghum-sudangrass outperforming forage sorghum only during the spring season. In addition, BMR hybrids had a lower DM yield than non-BMR hybrids, regardless of season and variety type. An interaction between season and trait was observed for predicted neutral detergent fiber digestibility after 30 h of incubation in rumen fluid (NDFD30h). Predicted NDFD30h was greater for BMR sorghum in comparison to non-BMR sorghum, but BMR sorghum had slightly greater predicted NDFD30h when grown in the spring than summer, whereas no seasonal differences were found for predicted NDFD30h across non-BMR sorghum. An interaction between season, variety type, and trait was observed for predicted dry matter intake at 45 (DMI45), 55 (DMI55), and 65 (DMI65) kg of milk/d. Predicted DMI45 and DMI55 were greater for spring BMR forage sorghum than for spring and summer non-BMR sorghum-sudangrass and were greater for spring BMR forage sorghum than for summer BMR sorghum-sudangrass. Predicted DMI65 was greater for BMR forage sorghum in comparison to all non-BMR hybrids in the spring. Additionally, spring BMR forage sorghum was greater than summer sorghum-sudangrass regardless of trait. An interaction between season and sorghum variety type was observed for milk yield per megagram of forage. Milk yield per megagram of forage was greatest for spring forage sorghum. Sorghum variety type and trait selection are crucial to minimize differences in forage nutritive value of sorghum forage between seasons and improve the performance of high-producing dairy cows.  相似文献   

4.
Forty Holstein cows were used in an 8-wk randomized trial to evaluate the effects of feeding combinations of forages with improved fiber digestibility on performance during early lactation. Treatments were arranged as a 2 × 2 factorial to include silage from normal (NCS) or brown midrib (BMR) corn silage with or without 10% Tifton 85 bermudagrass hay (T85). In a simultaneous digestion trial, degradation and passage kinetics and ruminal fermentation parameters were evaluated in a 4 × 4 Latin square design trial using late-lactation Holstein cows fitted with ruminal cannulas. Dry matter intake (DMI) and neutral detergent fiber (NDF) intake were greater with BMR than with NCS; however, milk yield and composition were similar among corn silage types. Inclusion of T85 reduced milk yield but supported higher milk fat percentage, resulting in similar yields of energy-corrected milk. Blood glucose concentrations were higher for BMR compared with NCS, and inclusion of T85 increased blood urea N concentrations. Treatments did not alter liquid or solid phase passage rates or rumen turnover. Corn silage type did not affect ruminal pH or volatile fatty acid concentrations, but inclusion of T85 increased pH and molar proportion of acetate but decreased butyrate. Molar proportions of propionate were greater for NCS and T85 compared with BMR and T85, resulting in an interaction. Results of this trial indicate that combinations of forages with improved fiber digestibility can be used to support intake and performance of cows during early lactation.  相似文献   

5.
Lignin, a cell wall component, limits digestibility of plant cell walls. Brown midrib (bmr) mutants of forages have lignin with altered chemical composition compared with their normal counterparts. The objectives of this study were to determine if bmr lignin is more inhibitory to digestion than is normal lignin and if bmr has a consistent effect on rate of digestion across species and environments. Extent and rate of in-vitro cell wall digestion of normal and bmr stems of sorghum (Sorghum bicolor (L) Moench, two comparisons), millet (Pennisetum americanum (L) Leeke) and maize (Zea mays L, two comparisons) were determined. Samples were incubated in rumen fluid, and data were fitted with a first-order, nonlinear model to estimate concentrations of potentially digestible neutral detergent fibre (PDNDF), digestion rate of PDNDF, concentration of indigestible residue (IR), and lag time before digestion. The NDF, acid-detergent fibre (ADF), and acid-detergent lignin (ADL) analyses were conducted sequentially on undigested samples. The IR: ADL ratio was 37% greater for bmr than for normal plants, which indicates that bmr lignin inhibits digestion more than normal lignin per unit of lignin. Digestion rate of PDNDF was faster in bmr than in normal counterparts in one of the two sorghum comparisons (difference of 59%) and in the millet comparison (difference of 27%), but in neither maize comparison. The bmr mutants were lower than normal genotypes in NDF (9%) and ADL (47%) concentrations. The PDNDF concentration was 19% greater for bmr than for normal lines. Thus, decreased lignin concentration in bmr mutants increased the extent of NDF digestion but did not consistently increase the rate of digestion.  相似文献   

6.
    
BACKGROUND: We used a biomimetic model system to ascertain how reductions in ferulate–lignin cross‐linking and shifts in lignin composition influence ruminal cell wall fermentation. Primary walls from maize cell suspensions with normal or reduced feruloylation were artificially lignified with various monolignols previously identified in normal, mutant, and transgenic plants. Cell wall fermentability was determined from gas production during in vitro incubation with rumen microflora and by analysis of non‐fermented polysaccharides. RESULTS: Hemicellulose fermentation lag time increased by 37%, rate decreased by 37%, and the extent declined by 18% as cell wall lignin content increased from 0.5 to 124 mg g?1. Lignification increased lag time for cellulose fermentation by 12‐fold. Ferulate–lignin cross‐linking accounted for at least one‐half of the inhibitory effect of lignin on cell wall fermentation. Incorporating sinapyl p‐coumarate, a precursor of p‐coumaroylated grass lignin, increased the extent of hemicellulose fermentation by 5%. Polymerizing varying ratios of coniferyl and sinapyl alcohols or incorporating 5‐hydroxyconiferyl alcohol, coniferaldehyde, sinapyl acetate, or dihydroconiferyl alcohol into lignin did not alter the kinetics of cell wall fermentation. CONCLUSION: The results indicate that selection or engineering of plants for reduced lignification or ferulate–lignin cross‐linking will improve fiber fermentability more than current approaches for shifting lignin composition. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
Cell wall-linked phenolics were investigated in maize internodes located at three positions of the stem (top-middle-bottom). While the lignin content did not change drastically with position, the amount of cell wall-ester linked p-coumaric acid sharply increased from the top to the bottom internodes of the stem. Conversely, the saponified ferulic acid content remained relatively unchanged along the stem. Moreover, the highest syringyl content of the β-O-4-lignin structures was found in the basal (most mature) internode. Therefore, enhanced p-coumaric esterification of the cell wall and preferential deposition of syringyl units in the lignin polymer might indicate an extended maturity stage of the cell wall of maize internodes. The bm3 mutation in the three maize hybrids is expressed by lignin reduction and ester-bound p-coumaric decrease in the mutant lines. Furthermore, all bm3 hybrids synthesised lignin polymers which were characterised by a very low S/G molar ratio (0.16-0.43). This ratio originates from the substantial reduction of the syringyl unit content in β-O-4-lignin structures compared with the normal lignin. The occurrence in the same range of the 5-hydroxyguaiacyl unit in bm3 lignin from each type of hybrids was noteworthy, demonstrating the high heritability of the bm3 mutation at the molecular level. The alkaline solubility of lignin was greater for the three mutant lines compared to the normal cultivars. Furthermore, the alkali-labile fraction of lignin of both normal and mutant lines had a monomeric composition which was consistent with the non-condensed structures of in-situ lignin.  相似文献   

8.
    

BACKGROUND

The relationship between the chemical and molecular properties – in particular the (acid detergent) lignin (ADL) content and composition expressed as the ratio between syringyl and guaiacyl compounds (S:G ratio) – of maize stems and in vitro gas production was studied in order to determine which is more important in the degradability of maize stem cell walls in the rumen of ruminants. Different internodes from two contrasting maize cultivars (Ambrosini and Aastar) were harvested during the growing season.

RESULTS

The ADL content decreased with greater internode number within the stem, whereas the ADL content fluctuated during the season for both cultivars. The S:G ratio was lower in younger tissue (greater internode number or earlier harvest date) in both cultivars. For the gas produced between 3 and 20 h, representing the fermentation of cell walls in rumen fluid, a stronger correlation (R2 = 0.80) was found with the S:G ratio than with the ADL content (R2 = 0.68). The relationship between ADL content or S:G ratio and 72‐h gas production, representing total organic matter degradation, was weaker than that with gas produced between 3 and 20 h.

CONCLUSION

The S:G ratio plays a more dominant role than ADL content in maize stem cell wall degradation. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

9.
In this experiment, intake of DK265 3-way corn hybrid by dairy cattle was compared specifically with intake 1) of its bm3 isogenic form, 2) of its 2 related single-way hybrids, and 3) of 2 controls that were registered hybrids of similar earliness. Both dry matter (DM) and lignin contents were similar in all hybrids except for the bm3 hybrid, which was less lignified. There was a tendency for lower starch content and, correlatively, higher neutral detergent fiber content in DK265 and in the 2 related single-way hybrids. Significant intake differences were observed between hybrids; the highest intake was recorded for the bm3 hybrid. Among normal hybrids, DK265 and one of its related single-way hybrids registered significantly higher intakes than other hybrids. Among normal hybrids, cell wall digestibility and/or lignin content did not explain all of the variations observed for intake, whereas the higher intake of DK265 bm3 could be related to its lower lignin content as compared with isogenic DK265. It was hypothesized that the higher intake observed for the DK265 hybrid was probably related to specific friability traits that are not relevantly measured through the usual tests used in corn breeding.  相似文献   

10.
Recently, we developed an alternate method to measure in vitro neutral detergent fiber (NDF) digestibility (ivNDFD) based on a primed rumen fluid inoculum. Pretreating rumen fluid inoculum with cellulose and holding the inoculum until it generated 0.3 mL of gas/mL of rumen fluid before inoculating forage samples improved ivNDFD assay repeatability but depressed ivNDFD means. Our objective in this study was to determine if pretreating rumen fluid with a mixture of carbohydrates and urea would affect the ivNDFD mean and variance. We also used the modified procedure as a reference assay to calibrate near-infrared reflectance spectroscopy (NIRS) to predict 24-, 30-, and 48-h ivNDFD. Two experiments were completed. In experiment A, 3 ivNDFD assays modified from the method of Goering and Van Soest were evaluated over 24, 28, 48, 54, and 72 h by using dried, ground alfalfa (1 mm) or wheat straw (0.5 g) sealed in Ankom F57 forage fiber bags. Bags were placed individually in 125-mL Erlenmeyer flasks and incubated with Goering and Van Soest media and 10 mL of rumen fluid. Rumen fluid was collected before feeding from 2 cannulated cows fed a high-forage diet and was prepared in 1 of 3 ways: 1) pooled rumen fluid was strained and used immediately to inoculate flasks (modified Goering and Van Soest method); 2) strained, pooled fluid was combined with buffer, reducing solution, and 1.25 mg of primer/mL of rumen fluid and allowed to produce 0.12 mL of gas/mL of rumen fluid before sample inoculation [Combs-Goeser (CG) method]; or 3) the CG method was used without the primer mixture (unprimed method). The assay was repeated 5 times, with 5 time points (24, 28, 48, 54, and 72 h) and 2 subsamples per time point for each method. Neutral detergent fiber was analyzed using an Ankom200 forage fiber analyzer and ivNDFD was determined as follows: ivNDFD (% of NDF) = 100 × [(NDF0h - NDFresidue)/(NDF0h)]. Results were analyzed using a mixed model procedure, and data were blocked by method to obtain repetition sums of squares, which were compared by an F-test to assess interassay error. Repetition sums of squares were reduced with the CG method compared with the Goering and Van Soest method (19 vs. 228), and mean ivNDFD estimates were similar at 28, 48, and 54 h. In experiment B, 24-, 30-, and 48-h ivNDFD data for 54 feeds were determined in triplicate using the CG method, and corresponding samples were then scanned with an NIRS instrument. Calibrations were computed using partial least squares regression techniques. The NIRS calibration equation R2 values were 0.93, 0.93, and 0.89 for 24-, 30-, and 48-h ivNDFD. Results suggest that the modified ivNDFD method using rumen fluid primed with a mixture of carbohydrate and urea (CG method) reduced interassay error.  相似文献   

11.
Internodes of the maize cell line W401 and bm1 and bm3 mutants expressed in W401 were harvested 5 days after anthesis (A5) and at silage (S) stage. The normal maize had a higher total phenolic (TP) content (80·5–90·5 g kg-1 cell wall DM) than both bm1 and bm3 mutants (74·4–86·4 and 66·0– 84·2 g kg-1 cell wall DM, respectively). TP were inversely related to cellulase digestibility with values of 85·4–91·5, 89·3–92·1 and 91·3–94·1% for normal, bm1 and bm3. Marked differences in p-coumaric acid concentrations were found ranging from 20·9 to 26·3 g kg-1 cell wall DM for normal, 14·9 to 15·3 g kg-1 for bm1 to 10·1 to 14·4 g kg-1 for bm3. The ferulate pattern was entirely different with the bm1 genotype providing the lowest total (9·1–10·7 g kg-1) and etherified (1·9–2·3 g kg-1) values. Although the bm3 contained more total ferulate (11·5–13·1 vs 10·9–11·7 g kg-1), the normal variety had a significantly greater amount of etherified ferulate (2·8–3·4 vs 3·2–4.1 g kg-1) implying a greater extent of cross-linking between wall polymers. Recovery of guaiacyl and syringyl residues was greatest in the normal maize with the bm1 occupying the middle position between the two extremes. Calculated S: G ratios from 4 M NaOH digestion and NMR were in good agreement with the normal line giving the highest ratio, bm1 intermediate and bm3 the lowest. Colorimetric analysis revealed a large increase in the aldehyde content of the in situ bm1 lignin compared to normal and bm3 genotypes although NMR failed to reveal significant numbers of aldehydic resonances. © 1997 SCI.  相似文献   

12.
The cell wall phenolic components in the internodes of three maize genotypes, namely normal, bm2 and bm3 maize, were determined. The bm2 and bm3 brown midrib mutations lowered the lignin content of the bottom, middle and top internodes to a similar extent. However, unlike bm3, the bm2 trait did not induce a sharp reduction of the level of ester-bound p-coumaric acid in maize internodes. The other main alkali labile phenolic acid, ferulic acid, reached similar levels in the three genotypes. The main difference between bm2 and bm3 mutations occurred in the alkyl aryl ether linked structures of the lignin component. In contrast to bm3 lignins, which are characterised by a low syringyl content, the bm2 lignin had a lower content of guaiacyl units than lignin of normal maize internode. Consequently, the syringyl/guaiacyl molar ratio of bm2 lignin gave higher values (2.7–3.2) than those from either normal (0.9–1.5) or bm3 lignins (0.3). The alkali solubility of lignin was also compared between the three genotypes. Incorporation of the bm3 trait in maize led to a high recovery of alkali soluble lignin whereas the bm2 lignin had a similar solubility to the normal one in 2 M NaOH. The monomeric composition of the alkali soluble lignins was consistent with the non-condensed structures of the in-situ polymer. Although the bm3 and bm2 mutations had different effects on lignification, the modification of the cell wall phenolic level was also found in the bm2 maize stem as previously studied.  相似文献   

13.
The upper five internodes were collected from maize (Zea mays L) inbred cell lines Co 125 and W401 harvested at the same developmental stage, 5 days after silking. Each internode was dissected into ten equal lengths labelled A (top) to J (base). The youngest cells were found in section J, which contained the intercalary meristem, and the oldest in section A. Internodes 1, 3 and 5 provided material for chemical analysis and internodes 2 and 4 for degradability measurements. Cell wall material accounted for one-third of dry matter in section J, doubling to two-thirds in the upper half of each internode. Only section J exhibited a polysaccharide profile typical of primary cell walls. In all other sections, 1,4-linked glucose (± 46% of cell wall) and xylan largely free from side chains (± 25% of cell wall) predominated. Net accretion of cell wall polysaccharide reached a maximum by segment G and thereafter little additional carbohydrate was deposited. Lignification appeared to be separated from the biogenesis of structural carbohydrate and continued over much of each internode reaching a maximum in section C. Degradability measurements, made using a modified neutral-detergent cellulase digestibility method, showed substantial differences between sections. In line Co 125, cell wall degradability fell from over 95% in the youngest section (J) to approximately 24% in section B. Internode 4 of line W401 failed to show the same pattern of degradabilities, probably because of a sequential rather than simultaneous pattern of internode elongation. Saponifiable p-coumaric acid appeared to provide a more sensitive marker than lignin of the extent of secondary wall development. The inverse relationship between extent of lignification in each section and its degradability confirmed the value of the internode model for the study of secondary wall formation and its biological consequences.  相似文献   

14.
15.
Cell types were isolated from sorghum stems at two stages of development, anthesis and grain maturity, to study cell wall characteristics. Cell walls were isolated from epidermis (EPID), sclerenchyma (SCL), vascular bundle zone (VBZ), inner vascular bundles (IVB) and pith parenchyma cells (PITH) and analysed for total carbohydrate, acid insoluble lignin, total uronosyls, neutral sugars and hydroxycinnamic acids. In addition, walls from SCL, VBZ, IVB and PITH were subjected to chemical fractionation to separate wall carbohydrate into polysaccharide groups. Although wall characteristics were similar at both plant maturities, there were differences in lignin concentration, hydroxycinnamic acids, and carbohydrate composition among the cell wall types. Lignin was lowest in the PITH walls (169 g kg−1) and highest in SCL and EPID (c 211 g kg−1). Cellulose was most abundant in VBZ and SCL walls with greater secondary wall formation. Pectic materials were most abundant in PITH walls. Xylans were similar among wall types except for EPID that contained higher amounts of xylose. Releasable hydroxycinnamates were not as consistent among the cell wall types. Total ferulates, including ester linked and releasable ether linked, tended to increase from PITH to SCL (8 to 15 g kg−1 CW) with an increase in the proportion etherified within the wall matrices (PITH 51%; SCL 66%). Total p‐coumarates showed opposite trends with PITH walls having significantly more (35 g kg−1 CW) than VBZ or SCL (19 and 13 g kg−1 CW). EPID walls contained the least pCA (6.5 g kg−1 CW). Except for the hydroxycinnamates, compositional trends for the different wall types would reflect changes from primary walls to increased amounts of secondary wall. Neutral sugar analysis of indigestible residues indicated similar carbohydrate compositions among the cell wall types, with xylose being less degradable than all other wall sugars. © 1999 Society of Chemical Industry  相似文献   

16.
Maize like other cereals shows qualitative and quantitative deficiency in protein content. Efforts were made to correct this by fortification, supplementation and fermentation. Two maize cultivars, Hudeiba 1 and Mugtama 45, were used to study the effect of fermentation followed by cooking on their protein quality. Maize flour was fermented for 32 h; samples were withdrawn at 8 h intervals. Results indicated that the proteins fractions albumins plus globulins were significantly (P < 0.05) increased in the fermented doughs. This is an indication of improvement in the protein quality of maize. Cooking resulted in significant (P < 0.05) changes in protein solubility. The essential amino acids particularly lysine increased from 1.82 to 2.06 and from 1.88 to 2.60 g/100 g (i.e. an increase of 11.6% and 27.7%) for Hudeiba 1 and Mugtama 45, respectively. The in vitro protein digestibility of cooked samples decreased significantly (P < 0.05); however, the negative effects of cooking were lower than those of unfermented cooked samples.  相似文献   

17.
Although the enzymatic or ruminal degradability of plants deficient in cinnamyl alcohol dehydrogenase (CAD) is often greater than their normal counterparts, factors responsible for these degradability differences have not been identified. Since lignins in CAD deficient plants often contain elevated concentrations of aldehydes, we used a cell-wall model system to evaluate what effect aldehyde-containing lignins have on the hydrolysis of cell walls by fungal enzymes. Varying ratios of coniferaldehyde and coniferyl alcohol were polymerised into non-lignified primary walls of maize (Zea mays L) by wall-bound peroxidase and exogenously supplied H2O2. Coniferaldehyde lignins formed fewer cross-linked structures with other wall components, but they were much more inhibitory to cell wall degradation than lignins formed with coniferyl alcohol. This suggests that the improved degradability of CAD deficient plants is not related to the incorporation of p-hydroxycinnamaldehyde units into lignin. Degradability differences were diminished if enzyme loadings were increased and if hydrophobic aldehyde groups in lignins were reduced to their corresponding alcohols by ethanolic sodium borohydride. © 1998 Society of Chemical Industry.  相似文献   

18.
大豆蛋白的体外模拟消化过程及热处理的影响   总被引:4,自引:0,他引:4  
本研究探讨了天然大豆分离蛋白(SPI)的体外胃蛋白酶消化过程,以及热处理对该消化过程的影响。SDS-PAGE分析表明,天然SPI的大豆球蛋白最易为胃蛋白酶所消化,而β-伴大豆球蛋白则较难。β-伴大豆球蛋白的不同亚基对胃蛋白酶消化的敏感程度也有所不同,其中α-亚基最为敏感。TCA-NSI法分析显示,在一定蛋白浓度下,随酶/底物之比的增加,天然SPI受胃蛋白酶的作用释放氮的过程呈现出较为典型的酶浓度依赖性。另外,不同热处理对SPI的体外消化过程产生不同的影响。一定的干热处理(80℃,30~60min)几乎不影响SPI的体外胃蛋白酶消化过程,而同样条件下的湿热处理则显著提高胃蛋白酶及胰蛋白酶对SPI的消化效果。这结果意味着SPI的体外消化效果取决于其变性程度,热变性程度越高,其消化效果越好。  相似文献   

19.
20.
Cell types were separated from internode 5 of sorghum stems to study the interrelationship between digestion characteristics and cell wall composition. Isolates of epidermis (EPI), sclerenchyma (SCL), vascular bundle zone (VBZ), inner vascular bundles (IVB) and pith parenchyma cells (PITH) were freeze-dried and ground for analysis. The cell fractions were digested in rumen fluid for times between 0 and 96 h, and wall composition measured using detergent extraction procedures. In-vitro dry matter digestibility (g kg?1 after 48 h) of cell fractions was in the order of PITH (849-906) > IVB (794-816) > SCL (692-701) > VBZ (641-679) > EPI (608-628). Total cell wall content (CWC), indigestible CWC, and lignin content followed the inverse order. Lignin concentration on a dry matter or cell wall basis was highly correlated with indigestible wall residue after 96 h. The proportion of cell wall digested after 96 h was higher for SCL and VBZ cells (61·8-68·2%) than for PITH cells (48·4-56·1 %), despite the former having lignin content three to five times higher than that of PITH cells. Clearly, there were differences between the cell types in wall composition or chemical linkages between wall components that lead to the observed differences in wall digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号