首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
分析比较了各国学者针对PVA纤维增强水泥基复合材料进行单轴直接拉伸采用的试件形式和试验方法,发现用矩形长条试件、两端粘贴铝片,并采用闭环试验机、位移控制方法得到的拉伸效果最好,这揭示了应变硬化效果与选择的拉伸方法关系较大。对比了混凝土、钢纤维混凝土和PVA纤维增强水泥基复合材料的拉伸应力-应变曲线,以及由其拉伸应力-应变曲线计算得到的对应应变软化材料和应变硬化材料的应力-裂缝宽度曲线,根据得到的应变硬化材料的应力-裂缝宽度曲线计算出了PVA纤维增强水泥基复合材料的断裂能是普通混凝土的50倍。  相似文献   

2.
直接拉伸试验是获得材料单轴拉伸应力-应变曲线的唯一可行方法,初始偏心是影响单轴拉伸试验结果的关键问题。结合外夹式和粘贴式单轴拉伸试验优点,设计上端球铰连接,下端球铰和销钉共同作用的试验装置,此装置能有效消除试件安装时的初始偏心,并具有轻微偏心的自调节功能,适用于具有应变硬化特征的高韧性、高延性、高能量吸收能力的纤维水泥基复合材料的轴向拉伸试验。对不同厚度UHTCC宽板进行轴向拉伸试验,研究其基本力学参数及应力应变特性。  相似文献   

3.
将钢纤维增强水泥基复合材料看作水泥砂浆基体和钢纤维夹杂组成的复合材料,采用扩展有限元法模拟了定向钢纤维增强水泥基复合材料受拉破坏的全过程.研究采用混合同余法生成随机数建立了钢纤维随机生成算法,进而生成了不同纤维掺量的定向钢纤维水泥砂浆细观数值模型.在考虑钢纤维与砂浆基体黏结滑移作用的基础上,模拟了定向钢纤维水泥砂浆受拉断裂全过程,得到了拉伸应力-应变全曲线.通过开展直拉试验,对细观数值模拟结果进行了验证.研究表明,细观数值模拟得到的全曲线结果与试验结果吻合较好,建立的细观模型有助于进一步揭示钢纤维增强水泥基复合材料的拉伸破坏机理.  相似文献   

4.
提出软弱区的概念,并定义该软弱区为砂浆试件中包含微裂隙、微裂缝或微缺陷的一个局部区域,采用细观力学的方法,假定砂浆试件是由砂浆基体和许多随机分布于基体中的软弱区所组成,基于蒙特卡罗随机抽样原理,实现软弱区单元在砂浆基体中的随机分布,基体单元和软弱区单元材料的非均匀性由Weibull参数来表征,同时假定基体单元和软弱区单元均符合低拉伸材料开裂准则,建立砂浆拉伸数值模型,考虑软弱区分布、Weibull分布参数、细观单元力学参数等对数值试验的影响,全面分析砂浆拉伸开裂的力学行为。在砂浆数值模型的基础上,系统研究短纤维增强砂浆的拉伸开裂及纤维细观力学参数、分布特征等对数值拉伸结果的影响。最后,将数值结果与试验结果进行对比,结果表明,数值模型能较好地模拟砂浆的拉伸开裂和短纤维对砂浆的增强效果,同时由数值模拟得到的砂浆单向拉伸应力–应变全过程曲线与试验结果较为吻合。  相似文献   

5.
高韧性水泥基复合(HTCC)材料的拉伸应力-应变关系能够反映其力学性能,而简单的线性模型无法不能准确地分析其力学性能.为更准确地分析HTCC材料的力学性能,提出可以体现其应变硬化和软化行为的四线型拉伸本构.基于该本构模型,推导出矩形截面构件的弯矩-曲率响应的理论解.利用弯矩面积法计算出三点弯曲和四点弯曲试验构件的跨中挠...  相似文献   

6.
应变硬化水泥基复合材料(SHCC)抗拉性能试验研究   总被引:1,自引:0,他引:1  
胡春红  赵铁军  戎涛 《工业建筑》2012,42(3):102-106
采用当地普通工程材料配制出不同配合比应变硬化水泥基复合材料(SHCC),利用外夹式单轴拉伸试验对不同龄期的哑铃型试件进行抗拉性能试验研究,获得了各试件的应力-应变曲线及裂缝开展情况。试验结果表明:各配合比SHCC在单轴拉伸荷载作用下,均可出现显著的应变硬化和多微缝开裂特征,其中A和C配合比系列的极限拉应变超过0.03。试验采用普通河砂制备出抗拉性能优越且稳定的SHCC,改变了采用石英砂制备此类材料的现状,降低了工程造价,为SHCC在工程实际中的推广应用奠定了理论基础。  相似文献   

7.
《混凝土》2017,(2)
应变硬化水泥基复合材料(SHCC)在拉伸荷载作用下,具有应变硬化和多微缝开裂的特性,其极限拉应变可达到3%以上。通过5根SHCC修复梁和1根未修复的对比梁,对SHCC修复既有混凝土梁在四点弯曲持续荷载作用下裂缝的发展情况进行了试验研究。主要考察了修复层厚度、黏结面粗糙度、SHCC龄期等因素对修复梁的裂缝间距、裂缝宽度的影响规律和作用机理。对比分析了试验梁在持续荷载作用下裂缝的出现、发展与分布规律。试验结果表明,与对比梁相比,修复梁的裂缝条数增多、间距减小;最大裂缝宽度与平均裂缝宽度均减小,且最大裂缝宽度扩大系数有所降低;SHCC层呈现出多裂缝开裂形态,平均裂缝宽度可控制在100μm左右。说明SHCC对于提高修复构件的耐久性极为有利,是一种有效的修复材料。试验结果可为实际工程提供理论依据和指导。  相似文献   

8.
以纤维类型及其体积分数为变量,通过单轴拉伸试验,研究了海砂工程水泥基复合材料(SECC)的单轴拉伸性能,并基于现有工程水泥基复合材料(ECC)的拉伸本构模型,阐述了SECC的稳态开裂机理,提出以强化段与软化段描述SECC拉伸应力-应变关系的波动上升段和下降段,得到了新的适用于SECC的拉伸本构模型.结果表明:纤维体积分数为1.5%的聚乙烯(PE)纤维/SECC表现出饱和多缝开裂的应变硬化行为,其延性可达到3.99%;提出的SECC拉伸本构模型计算结果可准确描述具有稳态开裂行为SECC的拉伸应力-应变关系.  相似文献   

9.
基于纤维桥联应力模型分析了水泥基复合材料中定向分布钢纤维的桥联应力,进而研究了定向钢纤维增强水泥基复合材料拉伸软化曲线。采用黏钢法进行单轴拉伸试验,获得了定向钢纤维水泥砂浆的轴拉应力-应变全曲线,并将试验软化曲线与模型预测曲线进行对比。研究表明,应用该模型可以近似计算定向分布钢纤维的桥联应力,且能较好地预测定向钢纤维增强水泥基复合材料拉伸软化曲线。  相似文献   

10.
为研究形状记忆合金(SMA)/聚乙烯醇(PVA)混杂纤维增强水泥基复合材料(SMA/PVA-ECC)的拉伸性能,开展单轴拉伸试验,分析了SMA/PVA-ECC试件的破坏现象、应力-应变曲线及特征参数,比较了SMA纤维掺量及其直径对试件拉伸性能的影响.结果表明:SMA/PVA-ECC试件卸载后残余裂缝宽度显著减小;SMA纤维掺量及其直径对试件拉伸性能影响显著,当SMA纤维直径为0.2 mm、掺量为0.2%时,试件综合拉伸性能最好,其初裂强度、极限拉伸应力及应变较工程水泥基复合材料(ECC)试件分别提高56.4%、23.6%及13.4%.  相似文献   

11.
田砾  毛新奇  李晓东  赵铁军 《混凝土》2006,(11):10-12,19
砂浆、混凝土等水泥基复合材料易于开裂、耐久性低劣的主要原因是其抗拉强度低、韧性差。高模量聚乙烯醇(PVA)纤维的添加可以增强水泥基材料的韧性,使其呈现准应变硬化和多微缝开裂特性,从而显著改善结构的耐久性。通过四点弯曲试验研究了PVA纤维体积掺量分别为0、0.75%、1.5%的抗折强度,按照ASTM方法确定了SHCC的弯曲韧度指数,通过JCI方法得到了SHCC的弯曲韧性系数。结果表明,最大抗弯承载力和最大挠度均随纤维掺量的增加而增加。结果可由纤维增强材料的应变硬化特性来解释。同时,与数值模拟结果的比较也证实了上述结论。  相似文献   

12.
水泥基材料抗拉强度低、韧性差是其易于开裂、导致结构耐久性低劣的主要原因之一。高模量聚乙烯醇(PVA)纤维可增强水泥基材料韧性,使其呈现准应变硬化和多缝开裂特征,从而改善结构耐久性。本文通过四点弯曲试验得出了不同加载速率和不同配比应变硬化水泥基复合材料(PVA-SHCC)的力-变形曲线并用CONSOFT软件计算断裂能。结果表明,硅灰使材料的抗压强度有所提高,但最大抗弯承载力和变形下降,断裂能随之降低;甲基纤维素使PVA-SHCC脆性增大;随着加载速率的降低,材料表现出更好的应变硬化性能,微裂缝条数增多。  相似文献   

13.
采用拉应变可达3%~5%、极限受拉破坏时平均裂缝间距和平均裂缝宽度仅为1~2mm和60~100μm的超高韧性水泥基复合材料(UHTCC)替换普通钢筋混凝土梁受拉区的部分混凝土材料,可提高结构的耐久性。针对该类UHTCC/RC复合梁,在假定UHTCC和混凝土之间界面粘结很好和平截面假设成立的前提下,根据平衡方程给出了其整个受力过程中考虑UHTCC起裂后拉应力增加部分影响的弯曲承载力理论解析公式,结合所完成的12个UHTCC/RC复合梁弯曲试验结果,进行了对比。结果表明,理论解析公式和UHTCC按理想弹塑性受拉模型推导的理论简化公式计算值比较接近,最大误差不超过10%。本文提出的正截面承载力计算方法可为该类复合梁的承载力设计提供参考。  相似文献   

14.
PVA纤维直径对水泥基复合材料抗拉性能的影响   总被引:6,自引:1,他引:6  
研究了由2种性能相似、直径不同的聚乙烯醇(PVA)纤维增强的水泥基复合材料的单轴抗拉性能.试验结果表明:材料抗拉性能受纤维直径影响显著,在基材配比、纤维掺量均相同时,采用直径较大(d_f=39μm)PVA纤维的复合可获得应变硬化与多点开裂模式,其极限抗拉应变可达到2.6%;而采用直径较小(d_f=15μm)PVA纤维的复合材料却表现出明显的应变软化与单点开裂模式,其极限抗拉应变仅为0.1%左右;当采用细PVA纤维时,复合材料的抗拉强度有所提高;其主要原因是纤维的粗细影响了纤维的桥接应力.保证纤维从水泥石中拔出而非断裂是优化纤维桥接性能的基本条件.  相似文献   

15.
短纤维增强超高韧性水泥基复合材料(Engineered Cementitious Composites,通常称为ECC材料)可以将传统水泥基材料在抗拉荷载下单一裂纹的宏观开裂模式转化为多条细密裂缝的微观开裂模式,其极限拉伸应变可达2%甚至达6%,具有典型的应变硬化特性、显著的韧性特征和优良的耐久性能。纤维编织网增强混凝土(Textile Reinforced Concrete,简称TRC)同样是一种新型的纤维增强水泥基复合材料,在这种复合材料结构中,直接将纤维粗纱沿混凝土结构中的应力主向连续布置,纤维对基体的增强效果得到了显著提高。采用纤维编织网与PVA短纤维相结合研究开发新型混凝土结构防裂新技术,结合PVA短纤维增强ECC和纤维编织网两种材料的优点,可以获得更为优良的抗裂和控制裂缝的能力,从而极大程度地提高混凝土结构的耐久性和使用寿命。通过四点弯曲试验,研究纤维编织网表面处理方法、水胶比、PVA纤维掺量对此种复合材料裂缝控制能力和承载能力的影响,并与TRC的弯曲性能作了比较。  相似文献   

16.
为进一步研究工程用水泥基复合材料(ECC)与超高强钢筋组合成的超高强钢筋ECC梁(UHSRRE梁)的受弯性能,对3根UHSRRE梁、1根普通强度钢筋增强ECC梁(RECC梁)和1根普通强度钢筋增强混凝土梁(RC梁)进行弯曲试验,分析弯曲试验现象、ECC应变、延性性能和特征弯矩,并研究纵筋配筋率对UHSRRE梁承载力的影响。结果表明:UHSRRE梁和RECC梁的控裂能力比RC梁的控裂能力强; 与RECC梁相比,UHSRRE梁并未因采用超高强钢筋而使其控裂能力明显下降; UHSRRE梁截面应变基本符合平均应变的平截面假定,梁受拉区边缘的ECC应变小于ECC单轴受拉极限应变,梁受拉区的ECC始终不退出工作; UHSRRE梁受拉区和受压区边缘ECC应变的最大值、受压区高度和特征弯矩(除开裂弯矩)都随纵筋配筋率增加而变大; 随纵筋配筋率增加,UHSRRE梁的能量延性系数先增后减; 当UHSRRE梁具有适当纵筋配筋率时,其延性性能可优于RECC梁的延性性能。  相似文献   

17.
Strain hardening cement‐based material for the repair of cracked concrete surfaces. In coatings on cracked concrete surfaces, crack opening displacements in the substrate might lead to local stress concentrations and cracking within the covering layer. However, repair layers made of strain hardening cementitious composites (SHCC) appear to be comparably resistant under these loading conditions. Because of their high deformability these materials are capable of bridging cracks in the substrate. Properties and fracture behaviour of the used SHCC material are explained and experimental results concerning its application for crack bridging repair layers on concrete surfaces are presented. The experimental findings could be confirmed by the results of nonlinear Finite Element simulations. In two pilot applications, the material has been successfully used under site conditions for repair layers on cracked concrete surfaces.  相似文献   

18.
基于混凝土断裂力学与细观力学理论,同时考虑钢纤维(SF)/聚乙烯醇(PVA)混杂纤维对应变硬化水泥基复合材料(SHCC)弯曲性能的影响,提出了一种适用于SF/PVA纤维混杂SHCC(SF-PVA/SHCC)弯曲性能的预测方法.开展了SF-PVA/SHCC弯曲性能试验,分析了纤维种类和掺量对SHCC抗弯强度、极限弯曲挠度及弯曲荷载挠度曲线的影响.结果表明所提出的弯曲性能计算方法可以较好地预测SF-PVA/SHCC的抗弯强度和极限弯曲挠度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号