首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以减压渣油为原料,在STRONG沸腾床渣油加氢装置上进行了试验,考察了催化剂活性变化的规律,根据催化剂失活的3个阶段,建立了催化剂失活模型并进行了模型验证。结果表明:运行初期反应温度对催化剂失活具有明显的加速作用,运行中期催化剂的活性主要取决于催化剂的金属沉积量;建立的模型预测值与实验值吻合得较好,表明该模型具有较好的准确性,可反映沸腾床渣油加氢催化剂失活的规律。  相似文献   

2.
以仪长管输原油渣油为原料,用连续搅拌釜反应器模拟沸腾床考察了高铁钙渣油的裂化性能和杂质脱除性能,并研究了沸腾床加氢催化剂的初期失活情况。结果表明,反应温度是影响高铁钙渣油转化率和杂质脱除率的主要因素,积炭、金属硫化物的沉积造成的催化剂孔口堵塞失活是影响高铁钙渣油沸腾床加氢工艺经济性的主要因素,铁钙含量应该作为采用沸腾床加氢工艺还是固定床加氢工艺加工高铁钙渣油的判断标准。  相似文献   

3.
中东常压渣油加氢脱硫反应催化剂初期失活模型   总被引:2,自引:0,他引:2  
通过试验研究了三种在加氢脱硫反应中不问性质的中东常压渣油对渣油加氢催化剂初期失活速率的影响。结果表明,原料油的芳香烃、胶质和沥青质含量及粘度是影响渣油加氢脱硫反应催化剂初期失活速率的主要因素,在此基础上建立的中东常压渣油加氢脱硫反应催化剂初期失活模型,经试验验证该模型具有可靠性,可以用于实际预测。  相似文献   

4.
针对STRONG沸腾床加氢工艺技术特点,开发了微球形沸腾床渣油和煤焦油加氢催化剂。微球形渣油加氢催化剂已成功应用于50 kt/a沸腾床渣油加氢示范装置,表现出较好的反应性能和耐磨性能,与国外领先技术水平相当。微球形煤焦油加氢催化剂具有较好的耐水性能和加氢性能,已成功应用于陕西精益化工有限公司500 kt/a煤焦油沸腾床加氢装置。针对引进的沸腾床加氢装置,开发了条形煤液化油和渣油加氢催化剂,煤液化油加氢催化剂已成功应用于中国神华鄂尔多斯煤制油公司加氢稳定性单元,表现出较好芳烃选择性加氢能力和较高的耐磨性能,总体性能优于国外技术。条形沸腾床渣油加氢催化剂具有较高的侧压强度和耐磨性能,加氢性能与国外领先技术水平相当。  相似文献   

5.
对沸腾床渣油加氢技术特有的影响因素进行了详细分析,指出沸腾床反应器中催化剂藏量是一个动态值,可以根据原料性质和要求的转化深度,通过调整催化剂在线加排量对该值进行调整;分析了沸腾床加氢过程中沉淀物形成的原因及其对反应器、催化剂及下游装置的影响;论述了催化剂磨损产生的细粉对反应稳定性和工艺性能的影响。通过研究沸腾床失活催化剂外层对传质和反应性能的影响,指出焦炭及金属在催化剂外层的积累削弱了催化剂外层的渗透性,致使液体的扩散能力及催化剂的活性和选择性都呈下降趋势;通过对失活程度不同的待生催化剂的分析,指出失活程度不同催化剂沉积的金属数量有明显区别,物理性质变化显著,但二者的碳含量没有明显差异。  相似文献   

6.
在中型固定床反应器上,以中国石化青岛炼油化工有限责任公司减压蜡油为原料,进行了加氢脱硫反应试验,并在此基础上建立了加氢脱硫反应动力学模型,同时考察了RN-32V催化剂活性随运转时间的变化情况,并建立了基于反应动力学的催化剂脱硫失活模型。对失活模型的验证结果表明,采用所建立的失活模型可较好地预测不同运行阶段产品硫含量及催化剂寿命,在指导工业装置运转方面有较好的参考价值。  相似文献   

7.
在中型固定床反应器上,以中国石化青岛炼油化工有限责任公司减压蜡油为原料,进行了加氢脱硫试验,并在此基础上建立了加氢脱硫反应动力学模型,同时考察了RN-32V催化剂活性随运转时间的变化情况,并建立了基于反应动力学的催化剂脱硫失活模型。对失活模型的验证结果表明,采用所建立的失活模型可较好地预测不同运行阶段产品硫含量及催化剂寿命,在指导工业装置运转方面有较好的参考价值。  相似文献   

8.
沥青、重油和渣油的改质加工方案之一就是催化加氢处理工艺。这项技术最有吸引力的方面在于它具有超过1 0 0 %的液体产物 ;它不太吸引人的方面是与催化剂和氢气消耗成本高有关。采用沸腾床加氢处理 ( H- Oil和 L C- Fin-ing工艺 )通过每天加入新剂和除去废剂来维持催化剂的活性。这些反应器的较为苛刻的操作条件 ,在获得渣油馏分较高的转化率的同时 ,也往往会加速催化剂的失活。虽然催化剂失活可能由中毒、结垢、老化或烧结等引起 ,但失活的主要原因是催化剂上生成焦炭和金属沉积。文章总结了前人的研究成果 ,为了测定渣油的哪种组分引起…  相似文献   

9.
以工业固定床渣油加氢失活催化剂(失活剂)为研究对象,依次采用正庚烷、甲苯对其进行索氏抽提,通过对失活催化剂上金属含量、形态及分布进行分析表征,发现金属沉积量沿着物流方向呈现降低趋势。通过Raman光谱、XPS分析表征发现,渣油加氢失活剂表面沥青质类物质含量很低。渣油加氢处理催化剂的活性相主要有3种:MoS2相、NiMoS相或CoMoS相。沉积的焦炭和金属使得催化剂暴露在外表面的活性相数量非常少。  相似文献   

10.
采用中型固定床加氢实验装置,以混合柴油为原料,对柴油加氢催化剂采用催速失活的方法进行处理,研究比较不同活性的柴油加氢NiMo催化剂的芳烃加氢饱和反应规律。结果表明,通过催速失活方法得到的催化剂相比新鲜剂发生了明显的失活,催化剂的活性损失随着反应时间增加、氢/油体积比减少而增加。在考虑催化剂活性损失的基础上建立三集总多环芳烃加氢饱和失活动力学模型,将计算得到的催速失活实验中活性系数与反应时间和氢/油体积比相关联,得到柴油加氢芳烃饱和活性系数模型,并通过失活动力学模型计算不同活性系数下多环芳烃含量的变化规律。  相似文献   

11.
以高硫劣质渣油为原料,用自行研发的沸腾床渣油加氢微球催化剂,在STRONG沸腾床试验装置上进行了加氢脱金属试验,考察了温度、空速和氢油体积比对渣油脱金属率的影响。结果表明:在沸腾床全混流的状态下,在试验所考察的温度范围内,渣油加氢脱金属率随着反应温度的增加呈上升趋势,最适合的反应温度为380 ℃;在试验所考察的空速范围内,原料的脱金属率随着空速的增加呈下降趋势,且下降趋势明显,最适合的空速为1.6 h-1;在试验所考察的氢油体积比范围内,脱金属率先随氢油体积比的增大而提高,达到一个最佳反应区域(氢油体积比450~550)后,又随氢油体积比的增大而降低。  相似文献   

12.
采用碳硫元素分析(CS)、催化剂氮含量分析(CAT-N)、热重 质谱联用分析(TG-MS)以及低温静态N2物理吸附等技术手段,分别对在中型固定床渣油加氢实验装置上运转0(硫化后)、162、262、562 h后的卸出加氢脱金属催化剂进行表征,以研究高氮低硫类渣油加氢过程运转初期催化剂失活快的原因。结果表明:在相同催化剂级配体系和相同工艺条件下,与加工高硫低氮类沙特阿拉伯轻质原油的渣油原料(沙轻渣油)的脱金属催化剂相比,加工高氮低硫类仪长管输原油的渣油原料(仪长渣油)的脱金属催化剂上形成了更多的积炭,沉积的硫化物略少,而氮化物较多;加工仪长渣油的脱金属催化剂上形成了更多的高温型积炭,且相比加工沙轻渣油的脱金属催化剂上形成的高温型积炭更难氧化燃烧;积炭对加工仪长渣油的脱金属催化剂的孔结构性质影响更大,比表面积、孔体积均低于加工沙轻渣油的脱金属催化剂,大孔占比更低。  相似文献   

13.
介绍了中国石化上海石油化工股份有限公司3.9 Mt/a渣油加氢装置RHT系列催化剂中期工业标定情况、RHT系列催化剂日常运行数据、装置能耗及装置运行存在的问题。工业标定及日常运行数据结果表明,在冷高压分离器压力为15.5MPa、体积空速为0.2h-1、较低的反应器床层平均温度、较小的反应器径向温差、平稳的反应器压降条件下,渣油加氢装置能够为下游的催化裂化装置提供低硫、低金属、低残炭的加氢重油原料。中期工业标定期间RHT系列催化剂的平均脱硫率为89.82%,平均降残炭率为65.01%,平均脱金属率为86.39%,说明RHT系列加氢精制催化剂具有较高的脱硫、降残炭、脱金属活性。同时,日常运行数据表明RHT系列加氢精制催化剂具有较低的失活率,能够满足催化剂长周期平稳运行的需要。目前装置由于循环氢压缩机转数无法调节,造成装置的两个反应系列不能达到理想的氢油比,将成为渣油加氢装置满负荷运行至催化剂末期时的最大瓶颈。  相似文献   

14.
渣油加氢脱金属催化剂初期失活的研究   总被引:4,自引:3,他引:1  
以孤岛常压渣油和伊朗常压渣油为原料,在固定床试验装置上研究了两种加氢脱金属催化剂的初期失活,测定了不同运转时间催化剂上的积炭量。得到了催化剂加氢脱金属反应活性系数与运转时间的关联式。发现运转过程的前200h为初期失活阶段,此后进入稳定失活阶段。  相似文献   

15.
沸腾床渣油加氢技术是加工高金属、高硫含量和高残炭劣质原料的重要技术,具有原料适应性强、装置操作灵活、转化率和脱杂质率较高的特点。本文介绍了H-Oil、LC-Fining和T-STAR沸腾床渣油加氢技术的发展及工业应用情况,并对这些技术进行了评述。结合目前炼油技术的发展趋势,对沸腾床渣油加氢技术的前景进行了展望。  相似文献   

16.
渣油加氢脱金属(HDM)催化剂是渣油加氢技术中的核心催化剂之一,开发高性能HDM催化剂对提高固定床渣油加氢技术的劣质原料适应性以及延长装置运转周期具有重要意义.从载体、活性金属组分和助剂三方面着手,对HDM催化剂的研究进展进行了综述.首先分析了载体孔结构对HDM催化剂的影响;介绍了扩孔剂法、水热处理法、低温烧结法等Al...  相似文献   

17.
对沸腾床加氢-焦化组合工艺制备高品质石油焦的工艺路线进行研究,探究沸腾床未转化油(UCO)的焦化规律。结果表明:渣油沸腾床加氢反应过程中,提高温度或降低空速有利于渣油转化率和杂质脱除率提高;同样的操作区间内,渣油转化率的变化明显大于杂质脱除率;随着渣油转化率增加,UCO硫含量先降低再升高。UCO焦化过程中原料中60%左右的硫转移到焦炭中,明显高于渣油焦化过程中硫转移到焦炭的比例(约42%);相比于渣油直接焦化得到的焦炭,较低硫含量的UCO制备的石油焦品质明显提升。UCO焦化所得石油焦收率和硫含量分别与UCO的残炭值和硫含量呈现良好的线性关系,可根据所需低硫焦牌号来指导沸腾床加氢过程的工艺优化。  相似文献   

18.
油砂沥青油为高密度、高黏度、高金属含量、高残炭的劣质原料,采用沸腾床加氢催化剂,利用反应釜进行加氢处理,考察了反应温度和反应时间对其反应性能的影响,以寻求最佳的沸腾床加氢处理反应条件。实验结果表明,随着反应温度升高、反应时间增加,油砂沥青油的加氢生成油中Fe,Na,Ni,V含量和残炭逐渐降低,最佳反应条件为反应温度430 ℃、反应时间80min,在该条件下,Fe,Na,Ni,V的脱除率分别为99.97%,99.99%,98.11%,99.61%,残炭降低率为72.61%。利用沸腾床进行油砂沥青油的加氢处理,可以有效改善油品性质,满足深加工要求。  相似文献   

19.
The catalyst system for fixed-bed residue hydrotreating processes usually consists of different types of catalysts designed to promote hydrodemetallation (HDM), hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) reactions to desired levels. Overall catalyst life is determined by the performance of the individual catalysts in the different reactors. Therefore, information about the activity, stability, selectivity, and deactivation behavior of the individual catalyst is highly desirable to design improved catalysts that can prolong catalyst life, increase stream efficiency, and improve process economics. In the present work, residue hydrotreating experiments were conducted on two types of industrial hydrotreating catalysts, namely Mo/Al2O3 and Ni-Mo/Al2O3, that have been used as HDM and HDS catalysts, respectively, in an industrial ARDS process. The primary objective of the study was to compare the deactivation behavior of both types of catalyst. The characterization of the used catalysts by elemental analysis, surface area, pore volume, and pore size measurements along with TPO-MS, 13C NMR, and electron microprobe analysis showed significant differences in the nature of the coke and metal deposits on the two types of catalysts. The role of initial coking, the relative importance of the coke, and metal depositions on the deactivation of the two types of catalyst are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号