首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
提出了一种汉语文本切分和词性标注相融合的一体化分析的统计模型,并应用动态规划算法与A*解码算法相结合的二次搜索算法,实现了一个基于该模型的汉语词法分析器.初步的开放测试表明,该分析器的分词准确率和词性标注正确率分别可达98.67%和95.49%.  相似文献   

2.
介绍了软件组件结构一般模型及Microsoft公司的组件对 象模型,并在此基础上,探讨如何将汉语自动分词与词性标注软件组件化。  相似文献   

3.
汉语分词和词性标注一体化分析的方法研究   总被引:2,自引:0,他引:2  
提出了一种汉语文本切分和词性标准注相融合的一体化分析的统计模型,并应用动态规划算法与A^*解码算法相结合的二次搜索算法,实现了一个基于该模型的汉语词法分析器。初步的开放测试表明,该分析器的分词准确率和词性标准注正确率分别可达98.67%和95.49%。  相似文献   

4.
基于实例的中文分词-词性标注方法的应用研究   总被引:1,自引:0,他引:1  
通过实验证明基于实例的中文分词-词性标注(下文简称为EBST,Example-Based Chinese word Segment and Tagging)系统对训练语料相关的文本具有非常好的标注性能.实验结果显示了EBST系统的分词-词性标注不仅具有非常高的准确率,而且和训练语料的标注保持了很好的一致性.这使得EBST系统非常适合于在基于实例的机器翻译(Example-Based Machine Translation,EBMT)系统中的应用.本文给出了EBST在EBMT系统中的应用实例及相应的实验结果.  相似文献   

5.
汉语自动分词和词性标注评测   总被引:6,自引:2,他引:6  
本文介绍了2003年“863中文与接口技术”汉语自动分词与词性标注一体化评测的一些基本情况,主要包括评测的内容、评测方法、测试试题的选择与产生、测试指标以及测试结果,并对参评系统的切分和标注错误进行了总结。文中着重介绍了测试中所采用的一种柔性化的自动测试方法,该方法在一定程度上克服了界定一个具体分词单位的困难。同时,对评测的结果进行了一些分析,对今后的评测提出了一些建议。  相似文献   

6.
中文分词和词性标注模型   总被引:1,自引:1,他引:1       下载免费PDF全文
构造一种中文分词和词性标注的模型,在分词阶段确定N个最佳结果作为候选集,通过未登录词识别和词性标注,从候选结果集中选优得到最终结果,并基于该模型实现一个中文自动分词和词性自动标注的中文词法分析器。经不同大小训练集下的测试证明,该分析器的分词准确率和词性标注准确率分别达到98.34%和96.07%,证明了该方法的有效性。  相似文献   

7.
分词及词性标注一致性校对系统的设计与实现   总被引:9,自引:0,他引:9  
针对真实语料中分词、词性标注结果前后不一致的现象提出了基于规则库的校对方法与策略 ,设计了一致性校对系统 ,进一步提高分词、词性标注的正确率。  相似文献   

8.
汉语词性标注方法的研究   总被引:4,自引:0,他引:4  
1 引言自然语言中,表达意义的符号(词)往往在各个层面上有歧义。在句法层面上,一个词可以兼好几种词性;在语义层面上,一个词可能有多个义项。词性歧义是由语言中的兼类词,即具有不止一个词性特征的词所引起的,只有在一定的上下文语境关系中,词所表现  相似文献   

9.
汉语词性自动标注系统的设计与实现   总被引:2,自引:1,他引:2  
介绍汉语词性自动标注系统的设计与实现。该系统实现了统计与相结合的方法进行汉语词性自动标注。描述了该系统的总体结构,以及所使用的非兼类词表、兼类词表、标记集和词性标注规则的组织,特别对稀疏矩阵及其存储方法进行了详细的介绍。  相似文献   

10.
本文应用N-最短路径法,构造了一种中文自动分词和词性自动标注一体化处理的模型,在分词阶段召回N个最佳结果作为候选集,最终的结果会在未登录词识别和词性标注之后,从这N个最有潜力的候选结果中选优得到,并基于该模型实现了一个中文自动分词和词性自动标注一体化处理的中文词法分析器。初步的开放测试证明,该分析器的分词准确率和词性标注准确率分别达到98.1%和95.07%。  相似文献   

11.
古文献的研究有助于传统文化的继承与发扬,而古文分词则是利用自然语言处理技术对古文献进行分析的重要环节.当前互联网拥有大量古汉语文本和词典方面的数据资料,该文提出利用互联网大规模古文语料构建古文基础词典;进而通过互信息、信息熵、位置成词概率多特征融合的新词发现方法从大规模古籍文本中建立候补词典;最终将基础词典与候补词典融...  相似文献   

12.
基于复句语料库分词系统研究   总被引:2,自引:0,他引:2  
复句在书面语中具有举足轻重的地位,如何让计算机正确理解复句是中文信息处理中一个值得重视的问题。现有的分词系统对复句关系词的正确切分与标注上不足以满足对复句进行层次分析和语义分析的需要。建立的分词系统在复句中关系词的切分和标注上做出了必要的改进。  相似文献   

13.
古汉语以单音节词为主,其一词多义现象十分突出,这为现代人理解古文含义带来了一定的挑战。为了更好地实现古汉语词义的分析和判别,该研究基于传统辞书和语料库反映的语言事实,设计了针对古汉语多义词的词义划分原则,并对常用古汉语单音节词进行词义级别的知识整理,据此对包含多义词的语料开展词义标注。现有的语料库包含3.87万条标注数据,规模超过117.6万字,丰富了古代汉语领域的语言资源。实验显示,基于该语料库和BERT语言模型,词义判别算法准确率达到80%左右。进一步地,该文以词义历时演变分析和义族归纳为案例,初步探索了语料库与词义消歧技术在语言本体研究和词典编撰等领域的应用。  相似文献   

14.
北京大学现代汉语语料库基本加工规范   总被引:25,自引:12,他引:25  
北京大学计算语言学研究所已经完成了一个有2700万汉字的现代汉语语料库的基本加工。加工项目除词语切分和词性标注外, 还包括专有名词(人名、地名、团体机构名称等)标注、语素子类标注以及动词、形容词的特殊用法标注。这项大规模语言工程的顺利完成得益于事先制订并不断完善的规范。发表《北京大学现代汉语语料库墓本加工规范》是为了抛砖引玉, 更广泛地向专家、同行征询意见, 以便进一步修订。  相似文献   

15.
北京大学现代汉语语料库基本加工规范(续)   总被引:6,自引:3,他引:6  
北京大学计算语言学研究所已经完成了一个有2700万汉字的现代汉语语料库的基本加工。加工项目除词语切分和词性标注外,还包括专有名词(人名、地名、团体机构名称等)标注、语素子类标注以及动词、形容词的特殊用法标注。这项大规模语言工程的顺利完成得益于事先制订并不断完善的规范。发表《北京大学现代汉语语料库基本加工规范》是为了抛砖引玉,更广泛地向专家、同行征询意见,以便进一步修订。  相似文献   

16.
分词和词性标注是中文语言处理的重要技术,广泛应用于语义理解、机器翻译、信息检索等领域。在搜集整理当前分词和词性标注研究与应用成果的基础上,对中文分词和词性标注的基本方法进行了分类和探讨。首先在分词方面,对基于词典的和基于统计的方法进行了详细介绍,并且列了三届分词竞赛的结果;其次在词性标注方面,分别对基于规则的方法和基于统计的方法进行了阐述;接下来介绍了中文分词和词性标注一体化模型相关方法。此外还分析了各种分词和词性标注方法的优点和不足,在此基础上,为中文分词和词性标注的进一步发展提供了建议。  相似文献   

17.
提出了一种基于神经网络的中文分词方法,以提高分词系统向新领域迁移的适应性和灵活性。该文方法采用了对现有分词器分词结果进行纠正的思路。这种基于纠正的两阶段方法与分词模型解耦,避免了对源领域语料和分词器构建方式的依赖。然而现有的基于纠正的方法依赖于特征工程,无法自动适应不同领域。该文利用神经网络对纠正器进行建模,在无需手工设计特征的情况下即可实现领域适应。实验表明,与当前方法相比,该文方法在领域文本上具有更好的分词性能和鲁棒性,尤其在未登录词召回率方面提升显著。  相似文献   

18.
基于语料库的中文姓名识别方法研究   总被引:25,自引:7,他引:25  
本文在大规模语料基础上提取和分析了中文姓氏和名字用字的使用频率,研究了中文姓名识别的评价函数,动态地建立了姓名识别统计数据表和姓名阈值。提出了在不作分词处理的原始文本中进行中文姓名识别的方法。经开放测试,召回率为95.23%;精确率为87.31% 。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号