首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 159 毫秒
1.
传统的消声器声学性能计算和实验测量都是在消声器进出口管道作为平面波声场的条件下进行,当进出口管道内出现有高阶模态激发的三维声场时,这些计算方法和实验测量方法就不再适用。由此,采用消声器进出口管道内加径向隔板的方法来计算消声器的声学性能,当原来管道声场中出现高阶模态时,仍然可以用平面波方法计算消声器的传递损失。应用该方法对进气滤清消声器进行传递损失数值计算,在原来进出口管道的平面波声场范围内,计算结果与传统方法计算结果均接近实验的测量结果,验证了该方法预测消声器声学性能的可行性。进而在所设计的消声器中频声学性能实验测试台架上,用声波分解法对阻性消声器进行传递损失测试,实验测量结果和有限元仿真结果也吻合良好。  相似文献   

2.
采用声学模态叠加法建立单腔扩张式消声器传递损失计算模型,然后通过Matlab编程实现单腔扩张式消声器传递损失的数值计算。在此基础上,比较声学模态叠加法、有限元法和基于平面波假定的经典公式法在计算单腔扩张式消声器传递损失上的差别,研究单腔扩张式消声器膨胀段尺寸对传递损失的影响。结果表明,对于平面入射波,声学模态叠加法可用于单腔扩张式消声器各频段传递损失的计算;增大膨胀段的半径能有效提高低频段的传递损失,但对高频段的影响较小;随着膨胀段宽度的增大,传递损失的峰值向低频移动,传递损失最大的频段向高频移动。  相似文献   

3.
在消声器进出口管道平面波截止频率以上,高阶模态被激发,传统方法假设进出口为平面波计算消声器传递损失的方法已不再适用。基于有限元法,把进出口面划分出若干个单元,将每个单元上的声场分布近似为平面波,建立基于单元能量叠加计算消声器传递损失的方法,并使用本文方法和Virtual.Lab Acoustics软件计算了三种类型消声器的传递损失,分析了非平面波现象。结果表明,本文方法可行且能够有效地考虑非平面波的影响。  相似文献   

4.
曾鑫  范鑫  李昱 《声学技术》2017,36(1):64-68
传递损失作为穿孔管消声器声学性能的评价指标,可以采用有限元法计算。文章提出数值联合仿真方法计算其传递损失,并与试验结果进行对比验证。进而采用该方法结合正交实验法研究多腔穿孔管消声器传递损失参数灵敏度。研究结果表明,数值联合仿真方法可以准确计算穿孔管消声器传递损失,比传统方法节省2/3的时间。在中频段,进出口管半径、扩张腔半径和第一腔结构参数对多腔穿孔管消声器传递损失影响明显。  相似文献   

5.
提出了有限元-模态匹配混合方法用于计算消声器中高频传递损失,将消声器进出口面上的节点声学量展开为模态叠加的形式并代入有限元方程,以本征函数为权系数对进出口面上的声压进行积分,从而建立起以内部节点声学量和进出口模态幅值系数为未知量的线性方程组。结合边界条件计算得到消声器进出口面上的各阶模态幅值系数,进而得到进出口声功率用于传递损失的计算。分别对抗性和阻性消声器的传递损失进行了计算,验证了有限元-模态匹配混合方法在全频段范围的有效性。  相似文献   

6.
采用有限元法计算内部声场,根据管道声学模态理论分解出模态声波,进而计算出消声器的传递损失。采用相同的原理,通过多传声器声波分解法对简单膨胀腔消声器进行实验测量,实验测量结果与数值预测结果吻合较好,并将消声器传递损失的数值预测和实验测量的有效频率范围拓展到平面波截止频率以上。  相似文献   

7.
在消声器试验中,消声器与测试管道通常用过渡管连接,针对过渡管导致损失误差的问题,采用三维声学有限元软件对锥形过渡管截面积比、锥形管长度和通过频率三个因素引起的扩张腔式消声器传递损失误差进行分析。经过研究发现,锥形过渡管引入的误差主要导致传递损失呈周期性震荡且低频段误差高于高频段。锥形过渡管截面积比越大,则误差越大,增加锥形管长度有利于减小误差。其次,在两载法基础上提出一种传递矩阵求逆的修正算法,通过对中间传声器间的声学单元传递矩阵求逆,可有效消除锥形过渡管引入的误差。  相似文献   

8.
同轴抗性消声器声学和阻力特性的数值计算与分析   总被引:2,自引:0,他引:2  
使用三维数值方法计算同轴膨胀腔消声器和直通穿孔管消声器的声传递损失和流动阻力损失,详细研究了进出口管插入膨胀腔内部长度以及进出口的结构形状对消声器传递损失和阻力损失的影响。采用锥形和指数形进出口管、进出口导流环以及穿孔管均能有效地降低流动阻力损失,而对消声器的低频消声性能影响较小,但对中高频消声性能影响很大。  相似文献   

9.
应用全局弱式无网格方法求解消声器的横向模态,使用模态匹配技术求解其传递损失。计算了圆形穿孔管阻性消声器的横向模态和传递损失,计算结果与解析方法和有限元方法计算结果吻合较好,且节省计算时间。  相似文献   

10.
为提高微穿孔管消声器的性能,研究了背腔结构对消声器性能的影响。基于一维声传播理论和微穿孔结构吸声理论,推导了渐变截面背腔微穿孔管消声器的声传播理论模型,利用传递矩阵法求出声学传递损失,并将理论计算结果与有限元仿真分析结果进行了比较,在等容积条件下分析了结构参数对传递损失的影响。结果表明:微穿孔管消声器的传递损失曲线在背腔的轴向模态频率处有极小值;对于锥形体结构背腔,增加锥度能够拓宽吸声频带,提高背腔轴向共振频率处的极小值;对于弧形体结构背腔,减小弧形半径能够提高消声器的低频处的吸声效果。  相似文献   

11.
应用有限元法分析进出口管同轴扩张室式消声器的声学性能,计算其传递损失并与一维平面波理论计算对比,分析一维平面波理论的适用范围。通过分析出口管偏置消声器,双出口管消声器和两腔消声器的声学性能表明:出口管位置和数量影响消声器中高频消声性能,而两腔消声器则能明显改善消声器中低频的消声效果。  相似文献   

12.
汽车消声器声学特性的数值分析与结构改进   总被引:2,自引:0,他引:2  
利用Sysnoise软件对一汽车消声器进行声场计算,得到消声器的声压分布和传递损失曲线;对消声器结构进行改进,在其内部增设一块隔板和两个穿孔管,并对改进结构进行数值计算。结果表明:低频时声波以平面波的形式向前传播,高频时声波主要以高次谐波的形式向前传播。与原始消声器相比,在600-1 200 Hz的中低频段,以及1 700-1 800 Hz,2 700-2 800 Hz的中高频段,改进消声器的传递损失提高20 dB以上;且在20-3 000 Hz总频段,改进消声器的传递损失平均提高19.8 dB。故改进消声器的消声效果良好。  相似文献   

13.
采用三维声学有限元法研究消声器的进出气口轴向角度对消声器声学性能的影响规律。结果表明,在中低频段,轴向角度对消声器传递损失影响很大,当轴向角度为60度时,对传递损失的影响最为显著;改进后的消声器改善了原消声器的消声性能。由于消声器进出气口轴向角度对消声性能的影响,这为消声器的设计提供了借鉴。  相似文献   

14.
基于多目标优化软件ISIGHT,运用多岛遗传算法对泡沫铝消声器进行优化设计。在不改变泡沫铝消声器整体结构的基础上,对消声器的进口管、出口管以及中间管的长度和直径尺寸进行修改,并分别在FLUENT和SYSNOISE中对优化前后的消声器进行仿真分析。结果表明:优化后的泡沫铝消声器的传声损失比优化前平均提高了5 dB左右,压力损失降低了11 %左右,优化后的泡沫铝消声器具有更好的声学性能和空气动力学性能。  相似文献   

15.
涡轮增压器进气管道的气动噪声严重影响着汽车的安全性和舒适度,由于穿孔管对中高频率宽频噪声具有良好的消声性能,因而得到广泛应用.该文设计一种模块化穿孔管串并联耦合的消声器结构,在分析消声器在常温无流与气固耦合状态下的模态频率与振型的基础上,研究气流流速对消声器模态频率和振型的影响规律以及消声器内部的气流再生噪声,气流的存...  相似文献   

16.
进出口位置对不同形状膨胀腔消声特性的影响   总被引:1,自引:0,他引:1  
使用有限元法计算椭圆形和跑道圆形截面膨胀腔的声学模态,分析进出口管位置对膨胀腔消声特性的影响。结果表明,同轴膨胀腔的第一个可传播的高阶模态为第3阶模态,出口置于该模态的节线处,可以消除该阶模态的影响,使平面波频段拓宽,膨胀腔的消声性能得到改善。进出口管偏置的膨胀腔,第1阶模态被激发,三维波效应在较低频率出现,中频消声性能变差。  相似文献   

17.
采用声学有限元法对抗性消声器进行模拟,分别研究侧置进气插入管和穿孔管消声器的消声性能。以侧置进气插入管为基础,对末端腔体不同布置形式进行研究。然后将SCR催化剂载体耦合到消声器中,计算出SCR催化转换消声器的传递损失。结果表明,该催化转换器具有较好的消声效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号