首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
添加β-Si3N4棒晶对氮化硅陶瓷力学性能的影响   总被引:1,自引:0,他引:1  
将由自蔓延燃烧合成法制备的β—Si3N4棒晶加入到α-Si3N4起始原料中,研究了热压烧结氮化硅陶瓷力学性能的变化.随棒晶添加量的增加,材料的韧性提高,抗弯曲强度下降.与不加棒晶相比,加入8wt%的β-Si3N4棒晶可使陶瓷的韧性从4.0MPa·m1/2提高到6.7MPa·m1/2.断口形貌和压痕裂纹的显微结构观察表明,韧性的提高源于长柱状晶粒的拔出和裂纹的偏转.  相似文献   

2.
研究了MgO-Y2O3-Al2O3体系(相应的层状复合陶瓷试样记为A)、Y2O3-Al2O3体系(相应的层状复合陶瓷试样记为B)及La2O3-Y2O3-Al2O3体系(相应的层状复合陶瓷试样记为C)烧结助剂对Si3N4/BN层状复合陶瓷结构与性能的影响.研究表明:在相同的烧结工艺下,试样A、B、C的抗弯强度分别为700、630、610MPa,断裂功分别为2100、1600、3100J/m2.试样A、B以脆性断裂为主,裂纹偏转现象不明显,而试样C的载荷-位移曲线显示了明显的“伪塑性”特征,裂纹的偏转与扩展现象明显.试样A中Si3N4晶粒大小不均且长径比较小,而试样C中长柱状Si3N4晶粒发育完善,有较大的长径比.  相似文献   

3.
采用高温氮化合成的热化学方法制备了单晶的线型和带型α-Si3N4准一维结构.其中线型α-Si3N4准一维结构沉积在温度较低的反应区域(1200℃),而带型α-Si3N4准一维结构则沉积在高温原料源附近位置(1450℃).经XRD、SEM、TEM、HRTEM分析表明,制备的线型和带型α-Si3N4准一维结构均为单晶;线型α-Si3N4直径约为100~300nm,长为几十微米;而带型α-Si3N4厚约30nm,宽度在300nm~2μm之间,长度为几微米到几十微米.从晶体生长热力学及动力学方面讨论了线型和带型α-Si3N4准一维结构的生长过程和分区沉积的原因.结果表明,较高的温度和过饱和度有利于形成带型准一维结构.    相似文献   

4.
自蔓延燃烧合成β-Si3N4棒晶   总被引:2,自引:0,他引:2  
采用自蔓延高温合成(SHS),在高压氮气中成功地合成了β-Si3N4棒晶,研究了添加不同量Y2O3对自蔓延燃烧合成β-Si3N4。棒晶长径比的影响.结果表明,Y2O3添加量有一个最佳范围,当Y2O3的添加量在2Wt%~5wt%时,棒晶生长均匀,长径比约为8.通过铜坩埚吸热淬火的方法,观察到β-Si3N4棒晶不同生长阶段的显微形貌,从而推测其生长机理为VLS和VS两种机理协同作用的结果.本文对β-Si3N4棒晶生长的反应历程也进行了阐述.  相似文献   

5.
周玉  陈胜 《材料导报》2000,(Z10):231-233
在较低的烧结温度下(1450℃)制备出钡长石(BaAl2Si2O8,BAS)含量为20wt%~100wt%的Si3N4/BAS陶瓷基复合材料,并对其进行了组织结构分析和力学性能测试。通过EDS研究发现无金属离子固溶入β-Si3N4晶格。随着BAS含量升高,Si3N4的α→β相转变量增加。Si3N4/BAS复合材料的室温抗弯强度随BAS含量增加选增后降。在1000℃、1100℃和1200℃时分别测试了复合材料的高温抗弯强度。  相似文献   

6.
研究新合成方法下得到超硬材料C3N4,利用黑索今(RDX)炸药作为高温、高压源,以双氰胺(C2H4N4)为主要前驱体. 通过扫描电子显微镜(SEM)、X射线衍射分析仪(XRD)、X射线能谱分析仪(EDS)及红外光谱仪(FTIR)分别对输出压力为16GPa时制得样品的结构、形貌、价键特性和元素组成进行了分析与表征. 结果表明,XRD测试数据与理论计算值相符很好,样品中同时含有α、β、石墨相C3N4以及晶间相;样品中C、N元素质量比为1.00∶2.98,两种元素主要以CN形式成键;利用扫描电子显微镜观测到线度为2μm的六边形β-C3N4晶粒. 采用爆炸冲击合成方法合成出多晶C3N4粉末, 并对其合成机理进行了讨论.  相似文献   

7.
原位反应结合多孔Si3N4陶瓷的制备及其介电性能   总被引:2,自引:0,他引:2  
以氮化硅(Si3N4)和氧化铝(Al2O3)为起始原料, 利用原位反应结合技术制备Si3N4多孔陶瓷. 研究烧结温度和保温时间对Si3N4多孔陶瓷的微观结构、力学性能以及介电性能的影响. 结果表明: 烧结温度在1350℃以下, 保温时间<4h时, 随着烧结温度的升高, 保温时间的延长, 样品的强度和介电常数增大; 但条件超出这个范围, 结果刚好相反; 物相分析表明多孔陶瓷主要由Si3N4和Al2O3以及Si3N4氧化生成的SiO2(方石英)组成. 所制备的多孔Si3N4陶瓷的气孔率范围为25.34%~48.86%, 抗弯强度为34.77~127.85MPa, 介电常数为3.0~4.6, 介电损耗约为0.002.  相似文献   

8.
放电等离子快速烧结SiC晶须增强Si3N4BN层状复合材料   总被引:1,自引:0,他引:1  
采用放电等离子烧结技术(SPS)快速烧结了SiC晶须增强的Si3N4/BN层状复合材料.利用SPS技术,在烧结温度为1650℃、保温15min的条件下,材料的密度可达3.18g/cm3,抗弯强度高达600MPa,断裂功达到3500J/m2.研究表明:特殊的层状结构、SiC晶须的拔出与折断是材料断裂功提高的主要原因.X射线衍射及扫描电子显微镜研究表明:α-Si3N4已经在短短的烧结过程中全部转变成长柱状的β-Si3N4,并且长柱状的β-Si3N4和SiC晶须具有明显的织构.  相似文献   

9.
原位生成棒晶增强Ti-B-C复相陶瓷的研究   总被引:6,自引:0,他引:6  
C与Ti在1800°C×35MPa×1h的烧结条件下反应生成了TiB2 棒晶,棒晶长度在10~30μm,其长径比在2~8范围.原位生成的棒晶赋予了材料具有极高的力学性能,材料的弯曲强度和断裂韧性分别为 680MPa和 12MPa·m1/2.通过 X射线衍射检测了材料的物相组成,利用扫描电镜及透射电镜观察了材料的显微结构.最后讨论了温度及金属Ti含量对棒晶TiB2的生成及发育的影响.  相似文献   

10.
自蔓延燃烧合成β-Si3N4棒晶   总被引:4,自引:0,他引:4  
采用自蔓延高温合成(SHS),在高压氮气中成功地合成了β-Si3N4棒晶,研究了中不同量Y2O3对自蔓延燃烧合成β-Si3N4棒晶长径比的影响。结果表明,Y2O3添加量有一个最佳范围,当Y2O3的添加量在2wt%-5wt%时,棒晶生长均匀,长径比约为8.通过铜坩埚吸热淬火的方法,观察到β-Si3N4棒晶不同生长阶段的显微形貌,从而推测其生长机理为VLS和VS两种机理协同作用的结果。本文对β-Si3N4棒晶生长的反应历程也进行了阐述。  相似文献   

11.
以SICl4-NH3-H2为反应体系,采用化学气相渗透法CVI)制备C/Si3N4复合材料.渗透产物的能谱和X射线衍射表明渗透产物为非晶态Si3N4,经1350℃真空热处理后,产物仍然为非晶态Si3N4;经1450℃真空热处理后,产物已经发生晶型转变,由非晶态转变为晶态的α-Si3N4和β-Si3N4.渗透温度、渗透时间、气体流量对试样致密化、增重及微观结构的影响研究表明渗透温度为900℃、SiCl4流量为30mL/min、H2流量为100mL/min、NH3流量为80mL/min、渗透时间120h、系统压力1000Pa时,气体渗透进入碳布预制体后,在预制体内反应均匀,制备的复合材料较均匀.  相似文献   

12.
利用有机泡沫浸渍结合无压烧结的方法成功制备了大孔径、高孔隙率,不同氮化硅含量的HAp-(β-Ca3(PO4)2)-Si3N4生物复合材料.测定了复合材料的抗压强度、显微硬度和孔隙率等性能.发现复合材料具有一定的抗压强度,其孔隙率较高,均超过45%.随着复合材料中氮化硅含量的增加,复合材料的孔隙率呈现出上升的趋势,但其显微硬度和抗压强度则先升高后降低.利用SEM观察了复合材料的断口形貌,发现复合材料中孔径从几十微米到500μm左右,孔隙相互贯通,可满足工程支架材料的要求.  相似文献   

13.
由SiO2/3Y-TZP包裹复合粉体制备ZrSiO4/3Y-TZP细晶陶瓷   总被引:1,自引:0,他引:1  
对湿化学法制备的SiO/3Y-TZP包裹复合粉体进行了热压烧结研究,并利用X射线衍射和透射电镜表征了烧结体的物相和显微结构.在低于1300℃,复合粉体发生瞬时粘性烧结,材料密度迅速提高;随着烧结温度的升高,SIO和ZrO发生反应生成ZrSiO.在1500℃热压条件下,制备了平均晶粒尺寸为350nm的ZrSiO/3Y-TZP细晶复相材料.我们认为,在烧结过程中形成的第二相ZrSiO,特别是SiO包裹层对抑制基体晶粒长大起主要作用.  相似文献   

14.
生物材料中金属-陶瓷界面和微结构   总被引:3,自引:0,他引:3  
本研究在钛合金表面施加与人体组织相容性极好的商业医用P-陶瓷(含Al2O3,SiO2,K2O,Na2O等)涂层,在提高与人体组织相容性方面,收到了显著的效果.而在此之前,在钛合金表面上施加Si3N4涂层,由干有效地增强了钛合金与陶瓷涂层之间的结合强度;使效果更佳.这一复合涂层体系的成功,解决了目前遇到的问题,开创了不少新的应用领域.本研究不但给出复合涂层化学组成、工艺和性能,并且对其显微结构进行了深入地研究.  相似文献   

15.
邹红  邹从沛 《材料导报》1999,13(2):66-68
通过添加TiN改善Si3N4陶瓷的加工性,结果表明,添加TiN含量达30wt%,可实现电火花切割加工。  相似文献   

16.
由β-Si粉末通过一定的工艺条件得到致密的氨化硅陶瓷,试样的显微结构为短柱状和等轴状颗粒交织排列而成的均匀结构.材料的烧结过程分为重排、晶形转变、晶粒生长三个阶段,随烧结时间增加,烧结试样的显微结构开始阶段变化很明显,2h后结构比较稳定.温度升高有利于柱状颗粒长径比的提高,添加剂量的增加使显微结构粗化.  相似文献   

17.
Al2O3含量对Al2O3/LiTaO3复合陶瓷介电性能的影响   总被引:1,自引:0,他引:1  
采用热压烧结法制备了Al2O3/LiTaO3 (ALT) 陶瓷复合材料, 研究了Al2O3不同体积含量(5vol%、10vol%、15vol%和20vol%)对LiTaO3压电陶瓷介电性能的影响. 结果表明:随着频率的增加, 不同Al2O3含量的ALT陶瓷复合材料的介电常数和介电损耗均降低, 但降低的幅度不同. 少量Al2O3(5vol%)的添加既能增大材料的介电常数同时又降低了材料的介电损耗, 但是随着Al2O3含量的继续增加, ALT陶瓷复合材料的介电常数和介电损耗都增大, 其居里温度先升高后降低. Al2O3作为第二相不但能促进LiTaO3陶瓷烧结致密,而且对ALT陶瓷复合材料的介电性能也有提高.  相似文献   

18.
β-Si3N4单晶体的制备   总被引:1,自引:0,他引:1  
在自增韧Si3N4陶瓷的烧结过程中,添加作为晶种的长柱状β-Si3N4单晶体对于改善陶瓷的强度和韧性是非常有效的。本研究旨在制备出长柱状β-Si3N4单晶体,并对其尺寸和形貌进行有效的控制。通过对87.3wt/α-SiN4 8.3wt/Y2O3 4.4wt/SiO2体系进行气压烧结,经去除掉玻璃相等漂洗工艺后,制得β-Si3N4单晶体,其直径为1-2μm、长度为4-6μm。同时对不同烧结工艺下制得的β-Si3N4单晶体的尺寸和工艺参数的关系进行了研究。  相似文献   

19.
添加Y2O3-Dy2O3的AlN陶瓷的烧结特性及显微结构   总被引:5,自引:0,他引:5  
本文探索了以自蔓延高温(SHS)法合成并经抗水化处理的AlN粉为原料,以Y2O3-Dy2O3作为助烧结剂的AlN陶瓷的烧结特性及显微结构.结果表明,晶界处存在Dy4Al2O9、Y4Al2O9、DyAlO3、Dy2O3和DyN等第二相物质,随烧结温度变化,第二相的种类、数量和分布不同,显微结构也随之变化,从而影响AlN的热导率.在1850℃下,可获得热导率为148W/m·K的AlN陶瓷.  相似文献   

20.
SPS制备亚微米晶氧化铝陶瓷   总被引:2,自引:0,他引:2  
以商业α-Al2O3粉体为原料, MgO为烧结助剂, 采用放电等离子烧结技术(SPS)制备亚微米晶氧化铝陶瓷. 系统研究了烧结温度、烧结助剂含量对亚微米晶氧化铝陶瓷的致密化过程及显微结构的影响. 分析结果表明, 1250℃以及0.05wt%分别是最佳的烧结温度和烧结助剂含量; 在此条件下获得的亚微米晶氧化铝陶瓷, 其相对密度达到99.8%TD(theoretical density),平均晶粒尺寸约0.68μm,显微硬度(HV5)达到20.75GPa,在3~5μm中红外范围内直线透过率超过83%. 当MgO掺杂量超过0.1wt%时, 第二相MgAl2O4形成, 引起光散射, 降低红外透过率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号