首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
为了检测甲醛,理论和实践中已经出现了很多成熟的方法。但每种方法都存在一定的局限性。为了达到成本和检测效率的平衡,提出并实现了基于支持向量机的甲醛检测系统。通过数据训练,生成针对特定环境的支持向量机。当环境出现甲醛超过阈值时,针对该环境的支持向量机可以判断并报警。经过仿真和实验,该方法对环境有更好的适应性,在成本和效率方面达到了更好的平衡。  相似文献   

2.
计算机技术的进步推动了网络技术发展,传统的计算机局域网故障检测技术过于依赖人力,检测耗时长,检测效果差,无法满足目前局域网故障检测需求,因此基于支持向量机设计了新的计算机局域网故障检测技术。首先选取了计算机局域网故障检测模型,其次基于支持向量机设计了计算机局域网故障检测算法,最后优化了径向基检测神经网络,从而实现了计算机局域网故障检测,进行实验,结果表明,设计的计算机局域网故障检测技术的检测耗时较短,具有省时性,有一定的应用价值。  相似文献   

3.
支持向量机是基于统计学习理论的一种新的机器学习方法,因其出色的学习性能在国内外学术界引起了日益广泛的重视。本文介绍了支持向量机的基本原理,回顾了SVM近年来的研究与应用,并给出了总结和展望。  相似文献   

4.
张蜀红 《粘接》2021,47(9):129-132
大多数情况下,机械设备故障模式识别属于一个小样本机器学习问题,通过小样本进行故障诊断往往精确度不高,但是支持向量机能够对小样本进行故障诊断分析,文章将研究基于支持向量机的机械设备故障诊断,通过对支持向量机多类分类算法中的二叉树进行改进,然后选择合适的核函数并对其相关参数进行优化,最后将改进的方法应用到旋转机械故障诊断中...  相似文献   

5.
戴波  马明璐 《化工学报》2012,63(9):2980-2990
管道腐蚀超声波内检测具有数据量大、干扰多的特点,其自动测厚算法要求适应性强,但各类超声波检测数据处理算法用于管道内检测自动测厚时存在误判率高、精度较低、耗时长等缺点。针对此问题,本文首先提出了基于两步法的一次FFT自动测厚算法;对其存在的误判率高的问题,提出了二次FFT自动测厚算法;对二次FFT算法精度降低的问题,提出了改进的二次FFT自动测厚算法。理论分析和各类实验证明,该算法具有一次FFT自动测厚算法精度高和二次FFT自动测厚算法误判率低的特点,较好地实现了管道腐蚀壁厚自动测量。  相似文献   

6.
基于最小二乘支持向量机的天然气负荷预测   总被引:31,自引:5,他引:31  
刘涵  刘丁  郑岗  梁炎明  宋念龙 《化工学报》2004,55(5):828-832
对城市天然气负荷预测的研究,对于保证天然气管网用气量、优化管网的调度和设备维修具有极其重要的意义.在国内,对于城市天然气负荷预测的研究才刚刚起步,目前还没有较系统的理论.同技术与理论较为成熟的电力负荷预测研究相比较,两者既有许多相同点,又有不同之处.相同之处在  相似文献   

7.
袁晓鹰  邵元海  王震 《洁净煤技术》2011,(4):113-116,123
利用日照局历年来积累的出口煤炭的检测数据和出口企业自身检测的数据,用支持向量机技术分析其化学性质、物理性质、指标范围等情况,对检测的山东省出口煤炭的产地样品按决策树方法进行特性分类,并结合支持向量机方法实现了山东省15个煤炭出口产地或品牌的鉴别。该方法属于一种新的分类鉴别方法,为煤炭产地的鉴别提供了一个可借鉴的实例。  相似文献   

8.
针对CO2腐蚀过程复杂、腐蚀类型特征难以提取和准确识别的问题,提出了以腐蚀图像信息为特征、支持向量机(SVM)为识别器的CO2腐蚀类型识别方法。以N80钢CO2腐蚀表面形貌图像为对象,经灰度处理、灰度增强,再使用小波分割形成子图像,提取其能量信息作为特征向量。以未腐蚀、点腐蚀和均匀腐蚀3种类型样本集构建支持向量机分类器,经测试,该方法可准确识别CO2腐蚀类型,并通过与神经网络分类器的对比,验证了该方法的优越性。  相似文献   

9.
针对具有多模态、非线性特征的复杂分布数据的工业过程,提出一种基于局部相对概率密度(LRPD)的多核支持向量机(MKSVM)故障检测方法LRPD-MKSVM。首先,计算训练样本的局部概率密度矩阵并进行标准化处理,来消除数据的多模态特性;其次,运用标准化后的概率密度矩阵训练多核SVM模型,获得判别分类函数;之后,将测试数据的概率密度矩阵作为多核SVM模型的输入,对其进行分类;最后,将该方法应用于TE多模态工业过程,分别与基于单核的高斯核函数SVM(RBFSVM)、多项式核函数SVM(POLYSVM)分类方法 对比分析,结果表明:基于多核SVM方法的分类正确率明显优于单核SVM方法。  相似文献   

10.
Natural gas load forecasting is a key process to the efficient operation of pipeline network. An accurate forecast is required to guarantee a balanced network operation and ensure safe gas supply at a minimum cost. Machine learning techniques have been increasingly applied to load forecasting. A novel regression technique based on the statistical learning theory, support vector machines (SVM), is investigated in this paper for natural gas shortterm load forecasting. SVM is based on the principle of structure risk minimization as opposed to the principle of empirical risk minimization in conventional regression techniques. Using a data set with 2 years load values we developed prediction model using SVM to obtain 31 days load predictions. The results on city natural gas short-term load forecasting show that SVM provides better prediction accuracy than neural network. The software package natural gas pipeline networks simulation and load forecasting (NGPNSLF) based on support vector regression prediction has been developed, which has also been applied in practice.  相似文献   

11.
输气管道干线气液联动阀根据检测管道压降速率、持续时间判断管道是否发生泄漏和自动关断阀门。该方法难以识别小孔泄漏等压降速率低于关断阈值的事故工况和压缩机抽吸等正常运行工况。以相国寺储气库集注干线为对象,通过仿真获得与管道泄漏、压缩机抽吸及截断阀紧急截断3种工况相关的压降速率信号,基于支持向量机建立了管道泄漏信号识别模型。提出混沌映射与自适应惯性权重的教与学优化算法,获得了模型中惩罚因子C和核函数参数g的最优值。利用相国寺储气库铜相线600组数据验证表明,优化后的模型:(1)对3种工况识别准确率为98.5%,较优化前提升了4.2%;(2)对于当量直径为50~125mm的小孔泄漏识别准确率为100%,提升了对小孔泄漏信号识别的准确性;(3)对压缩机抽吸和截断阀紧急截断工况识别的准确率分别为96.7%和100%;(4)当泄漏孔径小于50mm、压降速率小于0.01MPa/min时,阀室检测到的压降速率信号特征相近,此时建议使用气液联动阀与SCADA系统监测数据综合判断。  相似文献   

12.
基于支持向量机的软测量建模方法的应用   总被引:1,自引:0,他引:1  
利用基于最小二乘支持向量机(LS-SVM)的软测量建模方法,通过工业现场数据来对丁二烯精馏装置建立软测量模型.对于该软测量模型,支持向量机方法比BP神经网络方法具有更好的泛化能力.研究结果表明,基于最小二乘的支持向量机建模方法是一种有效的软测量建模方法.  相似文献   

13.
基于M估计器的支持向量机算法及其应用   总被引:4,自引:2,他引:2       下载免费PDF全文
包鑫  戴连奎 《化工学报》2009,60(7):1739-1745
训练样本的准确性对回归分析模型有很大的影响,然而训练样本中难免会出现一些造成分析模型失效的奇异点。 为克服奇异点对回归模型的影响,本文提出了一种基于M估计器的支持向量机(M-SVM)。它采用M估计器的目标函数代替最小二乘支持向量机(LS-SVM)目标函数中的残差平方和,同时提出了M-SVM的迭代求解算法,并将该算法应用于含有奇异点的低维仿真数据回归和汽油近红外光谱定量分析中。实验结果证明,相比于其他的支持向量机,M-SVM具有更好的稳健性和分析精度。  相似文献   

14.
A realistic pipeline modeled by a nonlinear coupled first-order hyperbolic partial differential equations (PDEs) system is studied for the long transportation pipeline leak detection and localization. Based on the so-called water hammer equation, a linear distributed parameter system is obtained by linearization. The structure and energy preserving time discretization scheme (Cayley–Tustin) is used to realize a discrete infinite-dimensional hyperbolic PDEs system without spatial approximation or model order reduction. In order to reconstruct pressure and mass flow velocity evolution with limited measurements, a discrete-time Luenberger observer is designed by solving the operator Riccati equation. Based on this distributed observer system, data on different normal and leakage conditions (various leak amounts and positions) are generated and fed to train a support vector machine model for leak detection, amount, and position estimation. Finally, the leak detection, amount estimation, and localization effectiveness of the developed method are proved by a set of simulations. © 2019 American Institute of Chemical Engineers AIChE J, 65: e16532 2019  相似文献   

15.
郑博元  苏成利  李平  苏胜蛟 《化工学报》2014,65(12):4883-4889
针对支持向量机(SVM)增量学习过程中易出现计算速度慢、稳定性差的缺陷,提出了一种基于向量投影的代谢支持向量机建模方法.该方法首先运用向量投影算法对训练样本进行预选取来减少样本数量,提高SVM建模速度.然后将新增样本"代谢"原则引入SVM增量学习过程中,以解决因新增样本不断加入而导致训练样本数量"爆炸"的问题.最后将该方法用于乙烯精馏产品质量软测量建模,实验结果表明,与传统SVM和最小二乘支持向量机(LSSVM)相比,向量投影的代谢SVM具有更好的预测结果.  相似文献   

16.
According to the problem of the pre-estimation with least square support vector machine (LSSVM) modeling is not ideal in the initial stages of penicillin fermentation process, two hybrid models are designed by utilizing the advantage of LSSVM and kinetics model. Through selecting the appropriate state variables and adopting these methods for penicillin fermentation, the mycelial concentration can be pre-estimated. Experiment results show that these hybrid modeling methods not only improve the above problem, but also have higher predicting accuracy and more powerful generalization ability than the single LSSVM method.  相似文献   

17.
针对以往粉煤灰分类的片面性,选择粉煤灰有关的化学成分和物理性质为特征向量,提出了基于支持向量机的粉煤灰科学分类。结果表明,此方法不仅结构简单,而且技术性能尤其是泛化能力与神经网络相比有明显提高,较全面地反映了粉煤灰的活性,从而为粉煤灰的综合利用及优化配置奠定了基础。  相似文献   

18.
Experiments to investigate the jet penetration depth were carried out. The jet penetration depth increases with the increase of spouting gas velocity, spouting nozzle diameter and carrier gas density, but decreases with the rise of the static bed height, particle density, particle diameter and fluidized gas rate. The intelligent model to predict the jet penetration depth has been established based on least square support vector machine and adaptive mutative scale chaos optimization algorithm. The prediction performance of the intelligent model is better than empirical correlations and neural network.  相似文献   

19.
基于多核支持向量机的非线性模型预测控制   总被引:4,自引:0,他引:4       下载免费PDF全文
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号