首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lettuce is often involved in foodborne outbreaks caused by pathogenic Escherichia coli. Current control strategies have often proved ineffective to ensure safe food production. For that reason, the present study compared the efficacy of tannin extracts and chlorine treatments on the reduction of E. coli ATCC 25922 adhered to lettuce leaves. E. coli was inoculated artificially on leaf surfaces of fresh crisp lettuce. Effectiveness of water, chlorine (200 mg/L), and three commercial available tannin extracts from Acacia mearnsii De Wild. (tannin AQ (2 %, w/v), tannin SG (1 %, v/v) and tannin SM (1 %, v/v)) treatments was evaluated using the viable plate count method and scanning electron microscopy (SEM). SEM results revealed that bacterial cells are attached as individual cells and in clusters to the leaf surface after 2 h of incubation. Biofilm formation was observed after 24 h of incubation. The tannin SM treatment was able to reduce counts in approximately 2 log CFU/cm2 on leaf segments. However, treatment was less effective in the reduction of E. coli counts after 24 h of incubation when compared to 2 h incubation of the same extract. The results suggest that the tannin SM extract diminishes E. coli counts adhered to and under biofilm formation on lettuce leaves and its effect is similar to the use of chlorine solutions.  相似文献   

2.
Psidium guajava L. has gained a special attention as health plant due to the presence of phenolic compounds. Box-Behnken design (BBD) has been applied for the extraction of target compounds from guava leaves via sonotrode ultrasound-assisted extraction (UAE). Different extraction times (5, 30, and 55 min), ratios of ethanol/water (50, 75, and 100% (v/v)), and ultrasound (US) power (80, 240, and 400 W) were tested to find their effect on the sum of phenolic compound (SPC), flavonols and flavan-3-ols via HPLC-ESI-QqQ-MS, and antioxidant activity (DPPH and TEAC assays). The best process conditions were as follows: 40 min, 60% ethanol/water (v/v), and 200 W. Established method has been used to extract phenolic compounds in two guava leaves varieties (pyrifera and pomifera). Pyrifera var. showed greater values of the SPC via HPLC-ESI-QqQ-MS (49.7 mg/g leaf dry weight (d.w.)), flavonols (12.51 mg/g d.w.), flavan-3-ols (7.20 mg/g d.w.), individual phenolic compounds, and antioxidant activity (8970 ± 5 and 465 ± 6 μmol Trolox/g leaf d.w, respectively) than pomifera var. Conventional extraction showed lower amounts of phenolic compounds (7.81 ± 0.03 and 4.64 ± 0.01 mg/g leaf d.w. for flavonols and flavan-3ols, respectively) in comparison to the ultrasound-assisted ones.  相似文献   

3.
In this study, chlorophyll fluorescence imaging (CFI) was used to monitor plant stress induced by cutting of mini romaine lettuce (Lactuca sativa L. var. longifolia) and by cutting and washing of endive (Cichorium endivia L.) during storage. Regarding the more detailed study of endive fresh-cut salads, we additionally monitored respiratory activity, phenylalanine ammonia lyase (PAL) activity, contents of plant pigments, and cut edge browning. Determination of maximum quantum efficiency F v/F m was feasible through sealed consumer-sized film bags, thus, enabling the non-invasive monitoring of both fresh-cut salad types in the corresponding modified atmosphere during storage. Cutting of romaine lettuce provoked a partially reversible drop of F v/F m during the first 24 h. Subsequently, F v/F m of cut romaine strongly decreased with elapsing shelf life, whereas intact leaves exhibited only a slight decline. Regarding minimally processed endive, warm water washing progressively reduced F v/F m with increasing heat exposure, while respiratory activities and the content of accessory pigments remained unaffected. The heat-dependent decrease of F v/F m was correlated to the inhibition of the PAL activity. Mildly warm washing (40 °C, 120 s; 45 °C, 60 s) reduced PAL activities, while Fv/Fm remained widely unaffected and visual quality was only partially improved. However, warm water washing at elevated temperatures (45 °C, 120 s; 50 °C, 30–60 s) enabled maximum visual quality retention, accompanied by a significant decrease of F v/F m. CFI may represent a useful tool to monitor the stress conditions due to cutting and warm water treatments, hence, allowing the systematic improvement of fresh-cut produce.  相似文献   

4.
Fruits have been the focus of several studies aimed at finding new antioxidant sources for protection against the damage caused by reactive species. In this study, the antioxidant activity and the presence of phenolic compounds in all parts (peel, pulp, and seeds) of Eugenia involucrata DC. fruits were evaluated. DPPH·, ABTS·+, and ORAC methods were used to determine the antioxidant activity, and an UHPLC-MS/MS method was developed for determining the phenolic compounds (gallic, chlorogenic, ferulic, p-coumaric and ellagic acids, quercetin, and myricetin). In the determination of both antioxidant activity and phenolic composition, the efficiency of solvents with different polarities—methanol/H2O (80:20, v/v), ethanol/H2O (80:20, v/v), methanol/acidified water with phosphoric acid pH 3.00 (80:20, v/v), and ethyl acetate—for the extraction of the phenolic compounds, was also evaluated. All parts of E. involucrata fruits showed antioxidant activity, in the range of 36.68 ± 1.44 to 873.87 ± 18.24 μmol TE g?1, being the highest values found in the seeds and peel when more polar extraction solvents were used. Six, five, and three phenolic compounds were identified and quantified in the pulp, peel, and seeds, respectively, with the highest abundance as p-coumaric acid (14 ± 2 mg kg?1) in the pulp, quercetin (47 ± 5 mg kg?1) in the peel, and gallic acid (74 ± 4 mg kg?1) in the seeds, also when more polar solvents were used. Although antioxidant activity methods suggested that the peel and seeds have more antioxidant potential, a wider variety of compounds were determined in the pulp.  相似文献   

5.
In this study, response surface methodology was used to optimize the extraction temperature (25–75 °C) and ethanol concentration (0–70 %, ethanol/water, v/v) to maximize the extraction of total phenolic compounds (TPC) from araticum pulp. The efficiency of the extraction process was monitored over time, and equilibrium conditions were reached between 60–90 min. A second-order polynomial model was adequately fit to the experimental data with an adjusted R 2 of 0.9793 (p < 0.0001) showing that the model could efficiently predict the TPC content. Optimum extraction conditions were ethanol concentration of 46 % (v/v), extraction temperature of 75 °C and extraction time of 90 min. Under the optimum conditions, the araticum pulp showed high TPC content (4.67 g GAE/100 g dw) and also high antioxidant activity in the different assays used (46.56 μg/mL, 683.65 μmol TE/g and 1593.72 μmol TE/g for DPPH IC50, TEAC and T-ORACFL, respectively). From our extraction procedure, we successfully recovered a significantly higher amount of TPC compared to other studies in the literature to date (1.5–22-fold higher). Furthermore, TPC and antioxidant activity were present in the fruit in levels that are difficult to find in other common fruits. These results expose a potential approach for improving human health through consumption of araticum fruit.  相似文献   

6.
Baclofen was illegally used in veterinary clinical medicine as a growth-promoting agent. To date, few methods have been developed for the monitoring of baclofen in animal tissues. In this study, a sensitive and efficient liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to identify and quantify baclofen in the muscle, liver, kidney, and fat of swine was developed and validated. Baclofen was extracted from tissues with ammonium acetate buffer (pH 5.2) and isolated with isopropyl-ethyl acetate (4:6, v/v). Then, a solid phase extraction using MCX cartridge was used to clean up the extracts. The elution was evaporated to dryness and reconstituted with water/methanol (90:10 v/v). All samples were determined by LC-MS/MS system through positive ionization in a multiple reaction monitoring (MRM) mode. The proposed method was validated by evaluation of specificity, linearity, recovery, accuracy, precision, LOD, and LOQ values according to Commission Decision 2002/657/EC. Estimated limit of quantification for baclofen in the muscle, liver, kidney, and fat of this method was 1.00 μg/kg, respectively. The mean intra- and inter-day assay accuracies fell within a range 88.5–93.9% and 86.2–93.2%, respectively. The mean intra- and inter-day precisions were 1.78 and 4.95% (RSD < 15%), respectively. The proposed method has proved to be suitable for accurate quantitative determination of baclofen for residue analysis.  相似文献   

7.
The cytotoxicity of phenolic antioxidants had attracted marked attention, posing serious challenges to food safety. This paper presented a screening method for two major phenolic antioxidants (butylated hydroxytoluene and tert-butylhydroquinone) added in edible oils. To specifically visualize the targeted compounds after developing with toluene/ethyl acetate/methanol 8:1:1 (v/v/v) to 70 mm solvent front, the plate was subjected to a standardized 1,1-diphenyl-2-picrylhydrazyl assay. In addition to synoptical eye inspection, accurate quantification was realized by modified densitometric measurements: fluorescence mode, excitation wavelength 530 nm (D2 and W lamp) without optical filter, which offered satisfactory sensitivity (8.5–17.5 mg/kg) and acceptable linearity (R2?>?0.999 within 50–200 ng/zone). Moreover, the established method was validated with edible oil samples, against EU Directive 2006/52/EC. Apart from that, the unambiguous confirmation of positive results was conveniently achieved by TLC-MS interface-mediated mass spectrometry. Featuring the merits of screening conception, the proposed method not only reached the goal of accurate quantification and conclusive identification of multi-phenolic antioxidants, but also excellently balanced the simplicity, detectability, and throughput of the screening workup. Therefore, it might be an attractive alternative to conventional methods.  相似文献   

8.
The quantitative analytical methods for seven N-nitrosamines including N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodibutylamine (NDBA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine (NMOR) were established for agricultural food matrices. Four food matrices were used for the method development: rice soup as a fatless solid matrix, apple juice as a fatless liquid matrix, corn oil as a fat-rich liquid matrix, and 20 % alcohol as an alcohol matrix. A combination of solid-supported liquid-liquid extraction (SLLE) using Extrelut NT and a solid phase extraction (SPE) using Florisil was employed for fatless matrices. For an alcohol matrix, only SLLE was used without SPE, and liquid-liquid extraction (LLE) was established for a fat-rich matrix. The extract was analyzed by gas chromatography-positive chemical ionization-tandem mass spectrometry (GC-PCI-MS/MS) using ammonia gas as an ion source. Linearity, recovery, repeatability, inter-day precision, reproducibility, and uncertainty were evaluated for method validation using four matrices. Method detection limits for all of the investigated N-nitrosamines were ranged from 0.10 to 0.18 μg/kg for the rice soup, from 0.10 to 0.19 μg/kg for the apple juice, 0.10 μg/kg for the corn oil, and from 0.10 to 0.25 μg/kg for 20 % alcohol, depending on N-nitrosamines. Established methods were applied to determine seven N-nitrosamines in some agricultural food products.  相似文献   

9.
Novel biomaterials and optimal processing conditions are fundamental in low-cost packaging material production. Recently, a novel biobased intact bitter cassava derivative was developed using an intrinsic, high-throughput downstream processing methodology (simultaneous release recovery cyanogenesis). Processing of intact bitter cassava can minimise waste and produce low-cost added value biopolymer packaging films. The objective of this study was to (i) develop and characterise intact bitter cassava biobased films and (ii) determine the optimal processing conditions, which define the most desirable film properties. Films were developed following a Box-Behnken design considering cassava (2, 3, 4 % w/v), glycerol (20, 30, 40 % w/w) and drying temperature (30, 40, 50 °C) and optimised using multi-response desirability. Processing conditions produced films with highly significant (p?<?0.05) differences. Developed models predicted impact of processing conditions on film properties. Desirable film properties for food packaging were produced using the optimised processing conditions, 2 % w/v cassava, 40.0 % w/w glycerol and 50 °C drying temperature. These processing conditions produced films with 0.3 %; transparency, 3.4 %; solubility, 21.8 %; water-vapour-permeability, 4.2 gmm/m2/day/kPa; glass transition, 56 °C; melting temperature, 212.6 °C; tensile strength, 16.3 MPa; elongation, 133.3 %; elastic modulus, 5.1 MPa and puncture resistance, 57.9 J, which are adequate for packaging applications. Therefore, intact bitter cassava is a viable material to produce packaging films that can be tailored for specific sustainable, low-cost applications.  相似文献   

10.
Potatoes are an important food in many regions of the world and are commonly used in a variety of food products. Thermal transition and thermo-physical properties of potatoes are important in order to design efficient food processes and select appropriate storage conditions. In this study, we determined the thermal transitions and thermophysical properties of raw and blanched/par-fried potato for a temperature range of ??32 to 21.1 °C. Using differential scanning calorimetry, we found an initial freezing point (Tf) at ??1.8?±?0.1 °C, an onset of melting (Tm) at ??9.9?±?0.2 °C and an unfreezable water content (Xw) for maximally freeze-concentrated raw potato at 0.21 kg water/kg potato. Corresponding values for blanched/par-fried potatoes were ??0.9?±?0.1 °C, ??11.0?±?0.2 °C and 0.18 kg water/kg potato. Results show that an increase in solids content decreased Tf of both raw and blanched potatoes. We modelled the relationship between them using the Chen model. The apparent specific heat (Capp) increased around Tf to 31.7?±?1.13 kJ/kg K for raw potato and 26.7?±?0.62 kJ/kg K for blanched/par-fried potato. For frozen raw potato at ??32 °C, thermal diffusivity (α) was 0.89?±?0.01?×?10??6 m2/s and thermal conductivity (k), 1.82?±?0.14 W/m K, respectively. These values were higher for frozen raw potato than for the unfrozen raw potato (0.15?±?0.01?×?10??6 m2/s and 0.56?±?0.08 W/m K, respectively at 21.1 °C). The apparent density (ρ) of frozen raw potato (992?±?4.00 kg/m3 at ??32 °C) was less than that for unfrozen raw potato (1053?±?4.00 kg/m3 at 21.1 °C), and a similar trend was obtained for blanched/par-fried potato (993?±?2.00 kg/m3 at ??32 °C and 1188?±?7.00 kg/m3 at 21.1 °C, respectively). This study established a correlation between thermo-physical properties and temperature. Findings may be used to inform the design and optimization of freezing processes and frozen storage for potato products.  相似文献   

11.
An extraction method for simultaneous determination of aflatoxins (AFLAs) G2, G1, B2, and B1 in cornmeal, based on vortex-assisted matrix solid-phase dispersion (MSPD) and high-performance liquid chromatography (HPLC) with fluorescence detection was optimized by a central composite design, validated and applied. Multivariate analysis was performed to evaluate the effect of cornmeal composition on AFLA extraction. The amount and proportion of solid support (celite and C18) and volume of elution solvent (methanol and acetonitrile) were the variables tested. The mobile phase of methanol/acetonitrile/water (24:14:62, v/v/v) in isocratic elution mode provided satisfactory AFLA separation. The best recoveries (85.7 to 114.8%) were obtained when the sample preparation contained 25 mg C18 as solid support and 10 mL of elution solvent. The limits of detection ranged from 0.01 to 0.04 ng g?1, and the limits of quantification varied from 0.02 to 0.1 ng g?1. The optimized method was suitable for coarse and medium grind cornmeal. Multivariate correlation analysis showed that the main interferers for AFLA recovery were proteins and sugars.  相似文献   

12.
Biodegradable films of chia by-products (mucilage and protein-rich fraction (PF)) incorporated with clove essential oil (CEO) were obtained and characterized. The effects of polymer concentration (PC; 1.0–3.0 %, w/v) and CEO concentration (0.1–1.0 %, v/v) were evaluated as well as the pH (7–10), using a 23 factorial design with four central points. The films exhibited moisture values between 11.6 and 52.1 % (d.b.), which decreased (p?<?0.05) with increasing PC and CEO. The thickness of the films increased (p?<?0.05) with increasing PC. PC and pH influenced (p?<?0.05) the lightness (L) and variation in color between red and green (a). The orientation of the color to yellow-blue hues (b) decreased significantly (p?<?0.05) with increasing PC. Transparency was significantly lower and higher (p?<?0.05) than PC and CEO, respectively. The film surface morphology was evaluated using atomic force miscrocope images, and thermogravimetric analysis (TGA) was performed to study the thermal stability of the films. The displacement and tensile strength were significantly lower (p?<?0.05) at higher concentrations of CEO, this variable being the only one with a significant effect. The chemical composition of the films was confirmed utilizing Fourier transform infrared (FTIR) spectroscopy. The proportion of CEO added to the films had a significant influence on antimicrobial activity, inhibiting the growth of both Escherichia coli and Staphylococcus aureus.  相似文献   

13.
Structural and rheological characterization of reconstituted hydrogels developed from A. vera non-fibrous alcohol insoluble residue (NFAIR) powder using different methods [viz., shaking (S), heating-shaking (HS), and heating (H)] and concentrations (viz., 0.2–1.6 %, w/v) was carried out. Functional group distribution by FTIR spectroscopy and Congo red (CR) method revealed the presence of acetylated acemannan in A. vera powder. Dynamic oscillation studies of A. vera (NFAIR) fluids at all concentrations of 0.2–1.6 %, w/v, showed gel strength in the order of H > HS > S method. However, in H method, increase in concentration from 0.2 to 1.6 %, w/v showed the conformational transition from semi-diluted solution to weak gel nature. Rheological models described the effect of heating temperatures (HT); 30–90 °C, and times (Ht); 15–60 min on viscoelastic behavior in reconstituted A. vera fluids. The reconstituted A. vera hydrogel prepared with a concentration of 1.6 %, w/v using 50 °C (HT) and 30 min (Ht) condition showed a good agreement with the Power law (storage modulus, G′) and Weak gel model (complex modulus, G*) fitted data (R2 > 0.94) resulting higher viscoelastic moduli intercepts; G0 (71.5 Pa s n), G0 (33.5 Pa s n), lower slopes; n′ (0.22), n″ (0.06), higher network strength (A F , 121.3 Pa s1/z ) and number of network (z, 5.3) values. The obtained results suggested that heating at 50 °C/30 min can develop aqueous weak gel networks of A. vera with enhanced gel strength which may be utilized as a novel gelling agent for wide variety of targeted applications in food and pharmaceutical sectors.  相似文献   

14.
A fast and simple technique composed of dispersive liquid–liquid microextraction (DLLME) and micellar electrokinetic chromatography (MEKC) with diode array detector (DAD) was developed for the determination of multi-photoinitiators in fruit juice. Seven photoinitiators were separated in MEKC using a 25 mM borate buffer of pH 8.0, containing 24 mM sodium dodecyl sulfate (SDS), 10 mM β-cyclodextrin (β-CD), and 12.5 % acetonitrile (v/v). A CD-modified MEKC made this method more suitable for the determination of isopropylthioxanthone (ITX) isomers including 2-IXT and 4-ITX than the recently prescribed methods. A DLLME procedure was used as an offline preconcentration strategy. The satisfactory recoveries obtained by DLLME spiked at two spiked levels ranged from 85.6 to 124.7 % with relative standard deviations (RSDs) below 14 %. The limits of quantification (LOQs) ranged from 2.1 to 6.0 μg kg?1.  相似文献   

15.
Shredded cabbage (50 % v/v) and Daikon radish cubes (57 % v/v) with different salt concentrations (0.15, 0.5, 1, 1.5, and 1.85 %) were heated from 30 to 70 °C in a static ohmic heating cell at different voltages (65, 80, 100, 120, and 135 V) and frequencies (60, 2070, 5030, 7990, and 10,000 Hz) to evaluate their ohmic heating behaviour. Radish heated under 1.5 % salt, 120 V and 7990 Hz or 1 % salt, 135 V and 5030 Hz conditions gave the shortest heating time of 6 min from 30 to 70 °C, and cabbage gave the longest time of 128 min at 0.15 % salt, 100 V, and 5030 Hz. Regression models of heating rate as a quadratic function of the sample temperature gave R2 >0.98. The general trend observed was that the magnitude of the heating rate increased with frequency at high voltage but decreased at low voltage for cabbage, while the opposite trend was observed for radish. Heating was more efficient at higher salt concentration and applied voltage. Radish heated more rapidly than cabbage. A slight slope change was observed in all cases between 50 and 60 °C. The response surface models revealed linear, cross products and quadratic effects to be significant with R 2 over 0.98.  相似文献   

16.
Starch availability has been implicated in unripe matured banana (Musa species), which when processed yields flour suitable for application in low gluten and composite wheat formulations. Unripe Musa species: Williams, Luvhele, Mabonde and Muomva-red obtained from fruit bunch were pretreated with ascorbic, citric and lactic acids, processed into 50 g of flour and characterised for their functional and thermal properties. Scanning electron microscope of unripe banana flour (UBF) showed varying micrographs of flour, with polygonal for Luvhele, oval for Mabonde, elongated for Muomva-red and between polygonal and spherical for Williams. The bulk density of UBF samples was within the range of 0.66–0.84 g/mL for all organic acid pretreatment while citric acid pretreated UBF had the least browning index. Significant difference (p < 0.05) was recorded in swelling power with no significant difference in water solubility index except for Mabonde UBF. Thermal properties showed single endothermic transition for all UBF samples at various pretreatment concentration. The onset temperature (To) of UBF ranges from 49.82 to 65.59 °C, peak temperature (Tp) from 60.11 to 76.71 °C, conclusion temperature (Tc) from 70.36 to 94.16 °C and enthalpy of gelatinization (ΔH) from 2.61 to 32.24 J/g. Short amylopectin chains present in starch of UBF was attributed to low To, Tp, Tc and ΔH values recorded for Mabonde cultivar, while the contribution of heat-moisture treatment rather than organic acid pretreatment of UBF samples was attributed to different gelatinization and transition temperatures recorded for all cultivars examined.  相似文献   

17.
In the present study, a systematic approach for extraction, purification and analysis of acylated-anthocyanins from Nitraria tangutorun Bobr. fruit was explored. Six acylated-anthocyanins in N. tangutorun fruit were identified by HPLC-MS/MS, and a rapid and efficient HPLC-DAD method was developed to analyze the acylated-anthocyanins. Ultrasonic-assisted extraction conditions of acylated-anthocyanins were optimized using response surface methodology, extraction at 70 °C for 32 min using 70% methanol solution (0.1% HCl, v/v) rendered an extract with 80.37?±?2.66 mg/100 g of cyanidin-3-O-(trans-p-coumaroyl)-diglucoside and 97.88?±?4.06 mg/100 g of total acylated-anthocyanins. Nine macroporous resins were investigated for preliminary purification of acylated-anthocyanins. According to the static/dynamic adsorption and desorption tests, XDA-6 macroporous resin exhibited the maximum potential for preparing acylated-anthocyanins. The purity of cyanidin-3-O-(trans-p-coumaroyl)-diglucoside (43.30 mg/g) in purified acylated-anthocyanins was 201.89 times of that of the extract (0.21 mg/g), and the purity of total acylated-anthocyanins increased from 0.36 to 56.44 mg/g. Besides, the stability (t 1/2) of cyanidin-3-O-(trans-p-coumaroyl)-diglucoside and total acylated-anthocyanins increased by more than five-fold after purification using XDA-6. The established methods of analysis, extraction and purification of acylated-anthocyanins were hopefully utilized in food industry.  相似文献   

18.
An acryloyl β-cyclodextrin (A-β-CD) monolithic column for solid-phase microextraction (SPME) and determination of carbofuran and carbaryl by high-performance liquid chromatography (HPLC) have been prepared through a “one-step” polymerization method. The synthesis conditions, including the volume of cross-linker, the ratio and volume of mixed porogenic solvent consisted of methanol and N,N-dimethylformamide were optimized. The prepared monolithic column was characterized by thermogravimeteric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and Brunner-Emmet-Teller (BET) measurement. The eluent type, volume and flow rate, sample volume, flow rate, acidity, and ionic strength were optimized in detail. Under the optimized conditions, a simple, rapid, and sensitive SPME-HPLC method was developed for determination of carbofuran and carbaryl in rice samples. The method yielded a linear calibration curve in the concentration ranges of 1.5–200 μg/kg for carbofuran and 0.3–200 μg/kg for carbaryl with correlation coefficients (R 2) of above 0.9955. Limits of detection (S/N = 3) were 0.5 μg/kg for carbofuran and 0.1 μg/kg for carbaryl, respectively. The recoveries of this method ranged from 88.1 to 105.8%. The relative standard deviations were less than 8.1%.  相似文献   

19.
A reversed-phase HPLC method for separation of polyphenols in honeybush tea (Cyclopia spp.) is presented. Separation of eriodictyol, luteolin, medicagol, formononetin, mangiferin, isomangiferin, hesperetin and hesperidin was investigated. A C12 stationary phase was required to separate mangiferin and isomangiferin. The method was used to quantify the three major polyphenols (mangiferin, isomangiferin and hesperidin) in C. genistoides, C. intermedia, C. maculata and C. sessiliflora and to study the effect of harvesting date on these compounds in two types of C. genistoides. The highest levels of the xanthones, mangiferin (3.61 g/100 g) and isomangiferin (0.54 g/100 g), and the flavanone, hesperidin (1.74 g/100 g), were found for C. genistoides (both xanthones) and C. intermedia, respectively. Cyclopia sessiliflora contained the lowest levels of mangiferin (1.04 g/100 g) and hesperidin (0.29 g/100 g). The mangiferin content of both the Overberg and West Coast types decreased with harvesting date (P <0.05). The Overberg type contained more mangiferin, but hesperidin was more prominent in the West Coast type.  相似文献   

20.
The aim of this study was to investigate the extrusion cooking behaviours of two wheat flour samples (W1DK, W2CH) in two different twin-screw extrusion systems, where the wheat flour samples were characterised by rapid visco analyser (RVA) measurements. A new method is proposed to model and compare the wheat flour extrusion behaviours in the two systems through the RVA measurements, an extrudate bulk density model and a melt viscosity calculation. A new method is suggested to calculate the melt viscosity in the extrusion process. The average viscosity value of the W1DK sample was 64% higher than that of the W2CH sample in the RVA measurements. The comparison results show that the high viscosity for W1DK obtained from the RVA corresponds to a high reduced melt viscosity (η r , (1/s)γ) for W1DK, i.e., η r ?=?0.25–2.61 (1/s)γ (η r ?=?0.042–0.082 (1/s)γ for W2CH), a high specific mechanical energy (SME) for W1DK, i.e., SME?=?8.16–11.28 kJ/kg (SME?=?5.57–9.99 kJ/kg for W2CH) and a low extrudate bulk density (ρ B ) for W1DK, i.e., ρ B ?=?185–488 g/L (1 g/L?=?1 kg/m3) (ρ B ?=?406–510 g/L for W2CH) in the two extrusion systems. The RVA viscosity and the calculated melt viscosity can be used to identify a recipe characteristic in terms of torque and extrudate bulk density in the two extrusion systems. A comparison has also been made for the bulk density model and response surface methodology in the extrudate bulk density prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号