首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
含预制裂纹岩石试样在动载荷作用下破裂模式的数值模拟   总被引:1,自引:0,他引:1  
本文利用岩石破裂过程分析系统(RFPA)研究了含有不同角度预制裂纹的岩石试样在动态载荷作用下的破坏过程。数值模拟表明:应力峰值较小时,试样的破裂模式与静态载荷作用下的破裂模式相似;应力峰值较大时,试样的破坏区主要集中在试样顶端。在相同的应力峰值务件下,试样的最终破坏模式基本不受预制裂纹的倾角的影响。数值模拟得到的破裂模式与实验结果比较吻合。  相似文献   

2.
静态和动态载荷作用下岩石劈裂破坏模式的数值模拟   总被引:23,自引:24,他引:23  
简单介绍了岩石破裂过程分析程序模拟岩石在动载荷作用下破裂过程的原理和功能,并用该程序研究岩石试样在静态和动态载荷作用下的劈裂破坏过程。数值模拟再现了岩石在静态和动态应力作用下破裂模式的差异,给出了在不同冲击应力波幅值条件下岩石试样的3种典型的破裂模式。数值模拟表明,在动态加载时,应力波幅值较低时试样表现出与静态加载时类似的破裂模式,随着应力波幅值的增加,其他2种典型破裂模式就表现出来。  相似文献   

3.
含孔洞岩石试样三维破裂过程的并行计算分析   总被引:3,自引:0,他引:3  
岩石破裂过程中裂纹的萌生、扩展、贯通和相互作用都呈空间三维分布,采用三维数值模拟才能更真实地模拟岩石的破裂过程。基于东北大学的大规模并行计算环境,利用 RFPA 3D -Parallel 程序进行了含孔岩石试样在单轴、双轴和三轴加载条件下破裂过程的数值模拟。数值模拟表明:①数值模拟再现了单轴载荷作用下孔洞周边裂纹区的分布规律,这证实了数值模拟程序的正确性;②在双轴压缩载荷作用下,试样的承载能力的提高非常有限,含孔试样的破裂模式为劈裂破裂,破裂面大致平行于加载平面;③在三轴压缩条件下,试样的承载能力大幅度提高,试样的破裂模式与最大主应力的作用方向有关,在平行于孔轴的高压应力和侧向约束条件下孔周围岩才会发生分区破裂。  相似文献   

4.
 为研究岩石在冲击荷载作用下岩石的破裂过程,运用岩体裂纹扩展破坏二维分析程序DDARF(Discontinuous Deformation Analysis for Rock Failure),对大理石巴西圆盘试样在分离式霍普金森压杆(SHPB-Split Hopkinson Pressure Bar)试验中动态破裂全过程进行了数值模拟分析研究。模拟结果形象展示了试样在不同入射波作用下裂纹的萌生、演化、扩展及贯通破坏情形,与试验结果有较好的吻合。对裂纹产生的力学机理、扩展过程及伴生现象做出了解释。研究结果表明:(1) 改进的微观破裂准则不仅适用于模拟岩石静载破裂,而且可以用于模拟动载破坏;(2) 巴西圆盘试样在受到冲击荷载作用时,主裂纹首先从一端产生,然后逐渐沿径向加载方向向中心延伸、扩展至另一端贯通破坏,裂纹尖端的拉应力是导致岩石开裂的原因;(3) 主裂纹拓展过程中伴随着次生损伤微裂纹的产生,次生微裂纹主要集中在主裂纹两侧附近区域;(4) 试样两端与入射杆、透射杆接触部分会产生三角形破裂区,且随着入射波幅值的增大,三角形破裂区域面积有增大的趋势。  相似文献   

5.
卸载岩爆过程数值试验研究   总被引:3,自引:0,他引:3  
 为探讨岩石试样卸载岩爆的发生机制,采用岩石破裂过程分析软件(RFPA2D)再现岩石试件卸载发生失稳破坏的过程。根据花岗岩的基本力学参数,首先对方形岩石试样进行单轴加载破坏的二维数值试验,然后在双向载荷条件下进行了基于同等试样的围压卸载试验模拟。数值试验结果表明:(1) 单轴加载试验与卸载失稳试验的岩石破坏机制和破坏模式存在很大差异。(2) 单轴加载试验的破坏过程以渐进式的微破裂发展为主,且微破裂主要集中在局部破裂面上;在发生主破裂之前,有许多微破裂前兆声发射现象出现,是典型的渐进破裂诱发失稳的岩爆模式。(3) 双轴加载时的围压卸载试验中岩样卸荷破坏时脆性特征更加明显,主要以突然、高密度的能量释放为主;同时表现出沿卸荷方向强烈扩容破坏特征,破坏模式则以大面积剪切破坏与局部拉裂破坏为特征的组合破坏模式;与单轴加载的情况相反,在主破裂发生前,几乎没有任何微破裂前兆,是典型的瞬时岩爆的破坏模式。  相似文献   

6.
为了探究不同层理角度下岩石材料的动态断裂行为,利用分离式霍普金森压杆冲击加载系统,对3种直切槽半圆岩石试件开展30°,45°,60°,75°和90°层理角度梯度内的动态断裂冲击试验,研究3种岩石试件在不同层理角度条件下的应力波及能量传播规律、应力响应特征和动态断裂韧性。并结合DLSM数值模拟软件进行辅助分析,证明其模拟方法能够较好地应用于岩石动态断裂行为的研究,通过应力波传播图像和裂纹尖端应力场图像分析试件应力波的传递规律,解释动态断裂韧性随层理角度改变的机制。结合模型的动能和破坏曲线总结不同层理角度下岩石的破坏特征。结果表明:层理角度改变会影响层理面对应力波的有效反射面积,从而影响反射波和透射波的传递规律,造成各部分能量比值的变化。3种岩石具有不同的破坏特征,但其动态断裂韧性均受到层理角度的影响,在小层理角度时更容易发生预裂和张拉破坏,导致试件强度降低。模拟得到的应力波传播图像解释了不同层理角度应力波的透反射规律,而裂纹尖端应力场图像则反映了动态断裂韧性与试件内部是否发生提前破坏有关。随着层理角度的增大,试件断裂消耗的动能越大,其破坏更具有均匀性。  相似文献   

7.
为研究不同冲击速度下层状岩石动态力学特性,采用分离式霍普金森杆压杆装置对千枚岩进行动态冲击试验。研究冲击速度与层理倾角对层状岩石应力–应变曲线、破坏应变及应变率的影响;并从破碎形态、波传播特性、能量吸收等方面对岩石的破坏模式进行分析。结果表明,层状千枚岩试样破裂面类型分为4类,低冲击速度下,试样大多以单一的破裂面形式破坏,高冲击速度下多种破裂类型混合发生。随着冲击速度的增大,破裂类型增多,岩石平均破碎尺寸减小。岩石的动态破坏强度随倾角增加呈现先减小后增大的趋势,高冲击速度下这一趋势更加显著。同一冲击速度下,随倾角增大,应变率先减小后增大,试样破坏应变随倾角变化先增大后减小,表明低冲击速度下,22.5°倾角试样最易破坏,高冲击速度下,45°~67.5°倾角试样破坏最为容易,0°~22.5°倾角试样最难破坏。在低冲击速度下加载方向与层面处于45°~67.5°夹角时破碎效果较好,能量利用率较高;高冲击速度下加载方向与层面处于90°夹角时破碎效果最佳,能量利用率最高。  相似文献   

8.
地下工程围岩承受载荷的形式为真三轴卸–加载后的扰动载荷,在频繁扰动载荷作用下围岩易出现物理力学性能劣化,进而诱发岩爆等工程灾害。基于地下工程围岩复杂受力环境,利用自制的岩石真三轴扰动诱变试验系统,开展复杂真三轴预应力路径和局部异源扰动载荷作用下花岗岩破裂试验。试验结果表明,在特定的应力状态下,在较大幅值的局部异源扰动载荷下花岗岩发生剧烈破坏,破裂模式为劈裂拉伸破坏。利用PFC3D精确再现室内试验并研究岩石扰动破裂的微观机制,研究结果表明:岩石内部的颗粒黏结从扰动载荷作用处开始破坏,当扰动载荷的幅值为150,200,250 k N时,破坏颗粒黏结数趋于稳定,最终岩石未发生整体破坏;但扰动载荷幅值等于300 k N时,破坏黏结数从施加扰动载荷位置扩散至试件整体,岩石扰动破坏由剪切破坏逐渐转变为拉伸破坏,最后发生试件整体破坏,室内试验与数值模拟结果相一致。  相似文献   

9.
基于数字图像的岩石非均匀性表征技术及初步应用   总被引:7,自引:4,他引:7  
依据数字图像处理理论,研发出一种基于数字图像的岩石非均匀性表征技术。该技术描述的非均匀性更接近于岩石的真实非均匀性,并将其映射到有限元网格中,与原有的岩石破裂过程分析系统(RFPA)相结合,建立一种更能准确反映岩石细观结构的数值模型,从而弥补传统数值方法所采用统计理论表征岩石非均匀特性的不足。通过对2种常规试验(单轴压缩和单轴直接拉伸)的数值模拟,再现花岗岩试件在荷载作用下的真实破裂过程。数值模拟结果表明:岩石的细观结构对岩石的力学性能和破坏过程有重要影响。该方法为进一步研究岩石、混凝土等非均质材料的力学特性和破坏机制提供一种新的手段。  相似文献   

10.
 在分析单轴压缩试验岩石Kaiser效应机制的基础上,建立岩石在点荷载作用下对先前应力记忆效应的理论表达式,采用岩石破裂过程分析软件RFPA2D对14种不同尺寸和力学参数的试件进行数值模拟,模拟结果表明,岩石点荷载声发射试验能够反映岩石先前应力状态,点荷载加压出现声发射时的点荷载值与岩石先前所受应力值成正相关关系。为了进一步验证上述结论,对5个岩石试件进行单轴压缩加载、卸载后用点荷载重新加载的循环试验,得到与数值模拟相同的结论,研究成果为工程现场地应力值估算、评价提供新的研究方法。  相似文献   

11.
A numerical simulator based on RFPA (Rock Failure Process Analysis) is used to study the deformation and failure process of a Brazilian disk of heterogeneous rock when subjected to static and dynamic loading conditions. In this simulator, the heterogeneity of rock is considered by assuming that the material properties of elements conform to a Weibull distribution; an elastic damage-based law that considers the strain-rate dependency is used to describe the constitutive law at mesoscopic scale; and a finite element program is employed as a basic stress analysis tool. The simulator is firstly validated by simulating the dynamic spalling of a homogeneous rock bar and by comparing with the theoretical and experimental results. Then, the failure process of a Brazilian disk of rock subjected to static and dynamic loading is numerically simulated, and the numerical results are compared with the available experimental results. Particular attention is given to the typical failure patterns of the rock disk when the incident compressive stress waves with different amplitudes are applied. The numerical simulation also identifies the failure mechanisms of rock during dynamic failure processes that are closely related to the propagation of the stress wave.  相似文献   

12.
利用新近开发的动态版岩石破裂过程分析系统RFPA2D模拟了动力扰动下含不连续面巷道的破坏过程,从细观角度分析了不同宽度不连续面的岩石巷道在动力扰动下破坏的规律,并和未含不连续面巷道结构的相应情况进行比较,探讨了含不连续面巷道结构在动载荷作用下的力学特性,结果表明不连续面对应力波衰减作用明显,对巷道的稳定与破坏影响较大.  相似文献   

13.
岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证   总被引:40,自引:20,他引:40  
从岩石的细观非均匀性特点出发,应用弹性损伤力学,对岩石破裂过程分析数值(RFPA^2D)模拟系统的本构关系进行了描述。用RFPA^2D系统模拟了岩石试样在单轴或双轴载荷作用下的强度特征和破坏形态,通过与实验结果对比验证了该本构关系和数值模拟系统的合理性和有效性。  相似文献   

14.
岩石三维破裂过程的数值模拟研究   总被引:8,自引:13,他引:8  
采用细观弹性损伤模型和有限元计算方法实现岩石三维破裂过程的数值模拟。考虑到岩石非均匀性的本质特征,通过引入简单直观的单元本构模型,采用细观单元材料性质退化的办法,利用位移加载来实现岩石逐渐破裂过干旱;模拟单轴压缩、单轴拉伸和剪切破裂3种基本试验,得到岩石非线性应力-应变曲线和不同载荷阶段三维损伤破裂演化系列图像;分析细观非均匀性对岩石宏观破裂力学行为的影响。试验研究表明,三维破裂比二维破裂更为复杂,RFPA^3D可以有效地模拟脆性材料的三维破裂。  相似文献   

15.
简单介绍了材料破裂过程分析(MFPA)程序模拟混凝土动态破裂过程的基本原理.用MFPA程序模拟了非均质混凝土在静态和动态应力作用下的破裂过程,给出了不同应力波幅值时试样的破裂模式,并探讨了应力波幅值和应力波作用时间对混凝土破裂模式的影响.数值模拟结果表明,动态荷载作用下混凝土的破裂过程受控于应力波传播及其诱发损伤的过程,混凝土材料力学性能的非均质性是造成其动态强度提高的原因之一.  相似文献   

16.
Fractures that develop progressively around underground excavations can be simulated using a numerical code called RFPA (rock failure process analysis). This code incorporates the mesoscopic heterogeneity in Young’s modulus and rock strength characteristic of rock masses. In the numerical models of a rock mass, values of Young’s modulus and rock strength are realized according to a Weibull distribution in which the distribution parameters represent the level of heterogeneity of the medium. Another notable feature of this code is that no a priori assumptions need to be made about where and how fracture and failure will occur – cracking can occur spontaneously and can exhibit a variety of mechanisms when certain local stress conditions are met. These unique features have made RFPA capable of simulating the whole fracturing process of initiation, propagation and coalescence of fractures around excavations under a variety of loading conditions. RFPA is used herein to simulate progressive fracturing processes around three common shapes of underground excavations – circular, elliptical and inverted U-shaped. The results of the simulations show that the code can be used not only to produce fracturing patterns similar to those reported in previous studies, but also to predict fracturing patterns under a variety of loading conditions. Based on these fracturing patterns, failure mechanisms are identified for various loading conditions.  相似文献   

17.
A numerical parameter-sensitivity analysis has been conducted to evaluate the effect of heterogeneity on the fracture processes and strength characterization of brittle materials such as rock under uniaxial compression loadings. This was done using the Rock Failure Process Analysis code (RFPA2D). Studying the details of macrofracture formation from specimen to specimen due to local variation in a heterogeneous material, a number of features were consistently obtained in the numerical simulations. In relatively homogeneous specimens, the macrofracture nucleated abruptly at a point in the specimen soon after reaching the peak stress. Prior to macrofracture nucleation, a small number of acoustic emission (AE) events or microfractures were distributed randomly throughout the specimen. It is difficult to predict where the macrofracture will initiate for the homogeneous rock type since the failure of the specimen is completely brittle. On the other hand, relatively heterogeneous specimens show a somewhat different response. In this case, more diffused AE events or microfractures appear in the early stage of loading. As opposed to homogeneous specimens, macrofracture nucleation starts well before the peak stress is reached and the fracture propagation, as well as the coalescence, can be traced. These events are precursors for predicting unstable failure of the specimen. For specimens with the same property of heterogeneity, however, the numerical simulations show that the failure modes depend greatly on the fracture initiation location — which is found to be sensitive to local variations within the specimen. Peak strength is dependent on the heterogeneous nature of the specimens. Splitting and faulting failure modes often observed in experiments are also observed in the simulations under uniaxial compression. It is found that tension fractures are the dominant failure mechanism in both splitting and faulting processes. The numerical simulation shows that faulting is mainly a process of tensile fractures, often en echelon fractures, developed in a highly stressed shear band, just is as observed in actual uniaxial compression tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号