首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
AZ91D镁合金半固态挤压铸造的研究   总被引:5,自引:5,他引:5  
研究了AZ91D镁合金在不同半固态温度下的挤压铸造。结果表明:半固态等温热处理可以将金属型铸造的AZ91D镁合金锭中的枝晶组织转变为球形晶粒组织,并能进行半固态挤压成形。AZ91D镁合金半固态挤压成形所需的最佳工艺条件是加热温度570℃左右,保温时问25~35min,或加热温度580℃左右,保温时问10~20min。  相似文献   

2.
研究了等温热处理温度和保温时间等工艺参数对AZ91D镁合金半固态组织演变和成形性的影响。结果表明 ,半固态等温热处理可以将普通金属型铸造的AZ91D镁合金锭中的枝晶组织转变为球形晶粒组织 ,其演变过程为 :在升温过程中晶界处部分γ相先发生溶解 ,随着温度的升高 ,剩余的γ相开始熔化 ,继而δ相也发生熔化 ,并在等温处理中逐渐演变为球状 ;保温温度越高 ,半固态重熔和δ相演变过程越快 ,保温温度过高或保温时间过长 ,试样易发生变形 ,同时 ,球状晶粒也容易趋于长大。AZ91D镁合金半固态成形所需的最佳工艺条件为加热温度 5 70℃左右 ,保温时间 2 5~ 35min ;或加热温度 5 80℃左右 ,保温时间 15~ 2 0min。  相似文献   

3.
半固态等温热处理对铸态AZ80镁合金组织的影响   总被引:1,自引:0,他引:1  
研究了等温热处理温度和保温时间对铸态AZ80镁合金半固态组织演变的影响.研究结果表明:在热处理过程中,随保温时间的延长,初生α相演变过程是,首先由大部分粗大的树枝晶二次枝晶臂合并成为大块状,而后大块状晶粒在晶粒内部及晶界处液相和固液界面的曲率共同作用下熔化分离为小块状,继续保温则圆整化;保温时间相同,等温处理的温度越高,枝晶演变过程越快,保温温度越高或保温时间越长,球状晶粒也容易趋于长大.AZ80镁合金半固态成形所需的最佳工艺条件为加热温度570℃左右,保温时间30min.  相似文献   

4.
双层金属管用半固态坯料制备及二次加热   总被引:1,自引:1,他引:0  
采用机械搅拌的方法制备半固态浆料,利用专门的制坯模按照预定尺寸制得能够使用于挤压成形双层金属管的半固态AZ91镁合金棒料和A356铝合金坯料,研究制备工艺以及二次加热温度及保温时间对半固态坯料微观组织的影响.通过组织分析,对双层金属管用AZ91镁合金坯料和A356铝合金坯料的触变性进行了研究.结果表明,双层金属管用AZ91镁合金坯料最佳尺寸为24 mm,二次加热温度为560 ℃,保温时间为21 min;A356铝合金环状坯料最佳尺寸壁厚为8 mm,二次加热温度为600 ℃,保温时间为20 min时,此时能得到适合于进行半固态触变成形的球化组织.  相似文献   

5.
采用应变诱导熔化激活法(SIMA法)制备镁合金半固态坯料,再应用等温挤压成形技术,对复杂形状的镁合金托弹板进行了半固态精密挤压成形试验研究;确定了半固态坯料制备、重熔加热和等温挤压成形等工艺过程中的坯料尺寸、加热温度、加热时间及成形速度等工艺参数,设计制造了等温挤压成形模具.半固态等温挤压成形的镁合金托弹板经固溶和时效热处理后,其抗拉强度ób可达到330 MPa,伸长率δ可达到7%,接近锻件性能指标.  相似文献   

6.
等径道角挤压AZ91D镁合金的半固态组织演变   总被引:9,自引:1,他引:9  
通过半固态重熔实验,并利用金相显微镜,对等径道角挤压AZ91D镁合金的半固态组织演变进行了研究.结果表明:等径道角挤压后二次加热等温处理是一种适于AZ91D镁合金的制坯方法,加热温度对坯料的组织有很大影响.当保温时间一定时,随着加热温度的升高,先是球化效果越来越好,后来发生晶粒合并长大现象,晶粒尺寸也会逐渐长大,当保温时间为15 min,加热温度为560℃时,二次加热组织最好;当加热温度一定时,随着保温时间的延长,晶粒尺寸有长大的趋势,当加热温度为560℃,保温时间为15 min时组织球化效果最好,晶粒最细小;当加热温度和保温时间一定时,随着挤压次数的增加,二次加热组织的晶粒尺寸减小.  相似文献   

7.
采用半固态等温热处理法、近液相线模锻法和等通道角挤压法制备AZ91D—Y镁合金半固态坯料。分别将3种状态的坯料加热到半固态温度区间进行二次重熔后,进行了触变模锻成形。结果表明,在半固态温度为560℃,模锻压力为200MPa的条件下,半固态等温热处理法、近液相线模锻法和等通道角挤压法制备坯料分别保温30,20,15min后触变模锻获得最佳力学性能;随着坯料加热温度的升高,触变模锻成形件力学性能呈现先上升后下降的趋势;增加成形压力有利于触变模锻成形件力学性能的提高;在相同成形条件下,等通道角挤压法制备坯料触变模锻后的力学性能最好,近液相线模锻法次之,半固态等温热处理法较差。  相似文献   

8.
采用正交试验设计,研究了SIMA法镦粗形变半固态AZ91D镁合金的挤压充型性能。结果表明:半固态加热温度对充型性能的影响作用最大,其次是保温时间,形变率的影响作用相对最小:随着半固态加热温度的升高或保温时间的延长,合金浆料的充型性能提高:但形变率从20%增加到30%时,浆料的充型性能反而有所降低,形变率从30%增加到40%时,浆料的充型性能增加。试验优选的成形工艺参数为:加热温度580℃,保温时间20min,形变率20%。  相似文献   

9.
半固态等温热处理AZ91D镁合金的显微组织及压缩变形行为   总被引:2,自引:1,他引:1  
研究了AZ91D镁合金半固态等温热处理后的组织及其压缩变形行为。结果表明,AZ91D镁合金经570℃×60min半固态等温热处理后,枝晶组织特征已不明显。此外,AZ91D镁合金经570℃×60min半固态等温热处理后,半固态压缩应力在压缩应变近似为0.025时达到最大值,然后随着压缩应变的增加而逐渐减小,最后几乎保持不变;进一步,其半固态压缩变形应力还随着变形温度降低或变形速率增加而增加。  相似文献   

10.
用金相显微镜观察了等通道转角挤压AZ91D镁合金在570℃等温热处理过程中的组织演变。结果表明,等通道转角挤压后半固态等温热处理是一种适于制备AZ91D镁合金半固态浆料的方法。该材料的微观组织在此过程中经历了四个阶段:初期的快速粗化阶段、组织分离阶段、晶粒球状化阶段和最后的粗化阶段。当挤压4道次后,加热时间为15 min时,组织球化效果最好,晶粒最细小;而后随着加热时间的延长,晶粒尺寸和形状系数逐渐增大;当加热时间一定时,随着挤压道次的增加,组织的晶粒尺寸和形状系数减小。  相似文献   

11.
12.
13.
论述了CAD技术中参数化设计的三种建模方法,重点介绍了基于特征的参数化建模原理。在此基础上,分析机械设计中的机构结构,归纳出其零件的几何特征构成。设计了机构CAD图形库,并提出了该图形库生成步骤和人机交互界面。  相似文献   

14.
刘兴  赵霞 《表面技术》2008,37(1):37-39
采用激光辐照对FeCrAlW电弧喷涂层的组织进行致密化处理,借助扫描电镜和X衍射对涂层的组织进行了分析.测试了涂层的显微硬度.结果表明:涂层组织致密度提高,孔隙率明显降低.随着激光扫描速度的增加,涂层的显微硬度降低.在较低的扫描速度下,涂层与基体之间形成互熔区,涂层与基体之间产生良好的冶金结合.  相似文献   

15.
16.
17.
扫描电镜观察显示胫骨是一种由羟基磷灰石和胶原蛋白组成的自然生物陶瓷复合材料.羟基磷灰石具有层状的微结构并且平行于骨的表面排列.观察也显示这些羟基磷灰石层又是由许多羟基磷灰石片所组成,这些羟基磷灰石片具有长而薄的形状,也以平行的方式整齐排列.基于在胫骨中观察到的羟基磷灰石片的微结构特征,通过微结构模型分析及实验,研究了羟基磷灰石片平行排列微结构的最大拔出能.结果表明,羟基磷灰石片长而薄的形状以及平行排列方式增加了其最大拔出能,进而提高了骨的断裂韧性.  相似文献   

18.
高等教育国际化与中国高等教育施化力培育   总被引:5,自引:2,他引:5  
本文从化层、化型、化向与化力等方面考察高等教育国际化的应然本质属性 ,描述与分析中国高等教育在国际化潮流中表现出的发展态势 ,针对种种态势提出中国高等教育核心施化力培育战略 ,以使中国高等教育乃至世界高等教育真正地走向国际化  相似文献   

19.
This paper describes the general features of the functional methods of electrohydropulse, pulse electrocurrent, and magnetic pulse treatment processes of the melt in order to positively vary its crystallizaton ability.  相似文献   

20.
Conclusion In alloy Fe-42% W atomized with a cooling rate during solidification within the limits from 5·103 to 1·105°C/sec with the maximum cooling rate (not less than 105°C/sec) precipitation of -phase (Fe7W6) from the liquid melt is suppressed. In granules of alloy obtained with a high solidification rate it is possible to achieve total dissolution of tungsten in solid solution (42%). Subsequent heating causes precipitation of -phase in dispersed form.I. P. Bardin Central Scientific-Research Institute of Ferrous Metallurgy (TsNIIChERMET) Moscow. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 34–36, September, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号