首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single walled carbon nanotubes (SWNTs) suspended above the substrate can be fabricated simply and rapidly by chemical vapour deposition growth over pre-grown multi-walled carbon nanotubes (MWNTs). SWNTs are suspended either on a randomly organized carbon nanotube network on an unpatterned substrate, or between organized pillars made from vertically aligned nanotube forests on a patterned substrate. All nanotubes are produced during a single growth run using a two step growth technique. This approach enables the fabrication of laterally suspended SWNT networks which are well suited for optical applications.  相似文献   

2.
Kang SJ  Kocabas C  Kim HS  Cao Q  Meitl MA  Khang DY  Rogers JA 《Nano letters》2007,7(11):3343-3348
We developed means to form multilayer superstructures of large collections of single-walled carbon nanotubes (SWNTs) configured in horizontally aligned arrays, random networks, and complex geometries of arrays and networks on a wide range of substrates. The approach involves guided growth of SWNTs on crystalline and amorphous substrates followed by sequential, multiple step transfer of the resulting collections of tubes to target substrates, such as high-k thin dielectrics on silicon wafers, transparent plates of glass, cylindrical tubes and other curved surfaces, and thin, flexible sheets of plastic. Electrical measurements on dense, bilayer superstructures, including crossbars, random networks, and aligned arrays on networks of SWNTs reveal some important characteristics of representative systems. These and other layouts of SWNTs might find applications not only in electronics but also in areas such as optoelectronics, sensors, nanomechanical systems, and microfluidics.  相似文献   

3.
With a fluidic alignment technique for aligning single-walled carbon nanotubes (SWNTs) over a large area on solid substrates, we can assemble SWNTs into parallel arrays with desired average separation. The number of SWNTs in the aligned arrays is controlled by the size of the microfluidic channels and the concentration of SWNTs in suspension. Most of the SWNTs are found to be aligned parallel to the orientation of the microfluidic channels. The performance of carbon nanotube field-effect transistors (CNTFETs) fabricated by this technique and the influences of impurities on the transistor characteristics are discussed.  相似文献   

4.
A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz. Electrodes and dielectrics patterned on top of these arrays yield thin-film transistors that use the SWNTs as effective thin-film semiconductors. The ability to build high-performance devices of this type suggests significant promise for large-scale aligned arrays of SWNTs in electronics, sensors, and other applications.  相似文献   

5.
通过旋涂硝酸铁异丙醇溶液于P型硅表面以获得均匀分布的催化剂颗粒,以CH4为反应气体采用CVD方法即可在P型硅表面均匀生长单壁碳纳米管,并且部分碳纳米管呈直立状.研究了催化剂浓度、生长基底、反应温度对单壁碳纳米管表面生长情况的影响.研究表明,催化剂浓度升高或采用二氧化硅替代P型硅为生长基底时,都会导致单壁碳纳米管生长的密度加大,而碳纳米管长度变短且更易贴附基底表面生长;随反应温度的提高碳纳米管的生长效率降低,并使得碳纳米管更易贴附基底表面生长.采用此方法制备的生长有直立碳纳米管的硅片作为扫描基底,在原子力显微镜敲击模式下利用拾取法成功制备了碳纳米管原子力显微镜针尖.  相似文献   

6.
Single-walled carbon nanotubes (SWNTs) have unique mechanical, electrical, and optical properties and can be easily chemically modified; features that make them excellent candidate materials for applications as sensors and stimulators in neuronal tissue engineering. The purpose of this study was to demonstrate that SWNTs can support neuronal attachment and growth, that simple chemical modifications can be employed to control cell growth, that SWNTs do not interfere with ongoing neuronal function, and that neurons can be electrically coupled to SWNTs. Growth and attachment of the neuroblastoma*glioma NG108, a model neuronal cell, was assessed on unmodified SWNT substrates or substrates from SWNTs modified with 4-benzoic acid or 4-tert-butylphenyl functional groups using a simple functionalization method. SWNT films support cell growth, but at a reduced level compared to tissue culture-treated polystyrene. The order of viability and cell attachment was tissue culture treated polystyrene > SWNTs > 4-tert-butylphenyl-functionalized SWNTs > 4-benzoic acid-functionalized SWNTs. Decreased cell growth after culture on untreated (non adherent) polystyrene suggested that cell attachment was a critical determinant of proliferation and cell growth on SWNTs. Fluorescence and scanning electron microscopy revealed decreased neurite outgrowth in NG108 grown on SWNT substrates. We are also among the first groups to demonstrate electrical coupling of SWNTs and neurons by demonstrating that NG108 and rat primary peripheral neurons showed robust voltage-activated currents when electrically stimulated through transparent, conductive SWNT films. Our data suggest that SWNTs are flexible resource materials for tissue engineering application involving electrically excitable tissues such as muscles and nerves.  相似文献   

7.
Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.  相似文献   

8.
In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self‐assembly of semiconducting single walled carbon nanotubes (s‐SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s‐SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self‐assembly of the selected s‐SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s‐SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s‐SWNT purity. Field‐effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self‐assembly of the SWNTs/thiolated‐polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm2 V?1 s?1), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents.  相似文献   

9.
Recent advances in high-purity and high-yield catalytic chemical vapor deposition (CVD) generation of single-walled carbon nanotubes (SWNTs) from alcohol are comprehensively presented and discussed on the basis of results obtained from both experimental and numerical investigations. We have uniquely adopted alcohol as a carbon feedstock, and this has resulted in high-quality, low-temperature synthesis of SWNTs. This technique can produce SWNTs even at a very low temperature of 550 degrees C, which is about 300 degrees C lower than the conventional CVD methods in which methane or acetylene is typically used. We demonstrate the excellence of the proposed alcohol catalytic CVD method for high-yield production of SWNTs when Fe-Co on USY-zeolite powder was used as a catalyst. At optimum CVD conditions, a SWNT yield of more than 40 wt % was achieved over the weight of the catalytic powder within the reaction time of 120 min. In addition to the advantages for mass production, this method is also suitable for the direct synthesis of high-quality SWNTs on Si and quartz substrates when combined with the newly developed liquid-based "dip-coat" technique to mount catalytic metals on the surface of substrates. This method allows easy and costless loading of catalytic metals without the need for any support or underlayer materials that were usually required in previous studies for the generation of a sufficient quantity of SWNTs on an Si surface. Finally, the result of molecular dynamics simulation for the SWNT growth process is presented to obtain a fundamental insight into the initial growth mechanism on the catalytic particles.  相似文献   

10.
Single-walled carbon nanotubes (SWNTs) have many exceptional electronic properties. Realizing the full potential of SWNTs in realistic electronic systems requires a scalable approach to device and circuit integration. We report the use of dense, perfectly aligned arrays of long, perfectly linear SWNTs as an effective thin-film semiconductor suitable for integration into transistors and other classes of electronic devices. The large number of SWNTs enable excellent device-level performance characteristics and good device-to-device uniformity, even with SWNTs that are electronically heterogeneous. Measurements on p- and n-channel transistors that involve as many as approximately 2,100 SWNTs reveal device-level mobilities and scaled transconductances approaching approximately 1,000 cm(2) V(-1) s(-1) and approximately 3,000 S m(-1), respectively, and with current outputs of up to approximately 1 A in devices that use interdigitated electrodes. PMOS and CMOS logic gates and mechanically flexible transistors on plastic provide examples of devices that can be formed with this approach. Collectively, these results may represent a route to large-scale integrated nanotube electronics.  相似文献   

11.
Weng CH  Su HC  Yang CS  Shin KY  Leou KC  Tsai CH 《Nanotechnology》2006,17(22):5644-5651
Here we present a method to synthesize single-walled carbon nanotubes (SWNTs) selectively suspended on tips of silicon-based nanostructure (Si-ns) templates. The Si-ns templates vertically aligned to the substrates are fabricated via an anisotropic etch process using reactive hydrogen plasmas, in which the etch-resistive nanomasks are the nanosized particles formed by thermal annealing of multi-layered catalytic thin films. After plasma etching, the nanosized self-masks remaining at the tips of the Si-ns directly serve as the catalysts for SWNT growth by thermal chemical vapour deposition. Consequently, the synthesized SWNTs are selectively suspended on the tips of the Si-ns, as revealed by characterizations using scanning electron microscopy and resonance Raman spectroscopy. This methodology provides a simple and straightforward approach to assemble two different nanomaterials, i.e., Si-ns and suspended SWNTs, together as a building block for constructing nanodevices for possible applications.  相似文献   

12.
Kim JJ  Lee BJ  Lee SH  Jeong GH 《Nanotechnology》2012,23(10):105607
The electronic, physical and optical properties of single-walled carbon nanotubes (SWNTs) are governed by their diameter and chirality, and thus much research has been focused on controlling the diameter and chirality of SWNTs. To date, control of the catalyst particle size has been thought to be one of the most promising approaches to control the diameter or chirality of SWNTs owing to the correlation between catalyst particle size and tube diameter.In this study, we demonstrate the size engineering of catalytic nanoparticles for the controlled growth of diameter-specified and horizontally aligned SWNTs on quartz substrates. Uniformly sized iron nanoparticles derived from ferritin molecules were used as a catalyst, and their size was intentionally decreased via thermal heat treatment at 900?°C under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates in order to elucidate the effect of the size of the nanoparticles on the tube diameter and the effect of catalyst size on the degree of parallel alignment on the quartz substrates. SWNTs grown by chemical vapor deposition using methane as feedstock exhibited a high degree of horizontal alignment when the particle density was low enough to produce individual SWNTs without bundling. Annealing for 60?min at 900?°C produced a reduction of nanoparticle diameter from 2.6 to 1.8?nm and a decrease in the mean tube diameter from 1.2 to 0.8?nm, respectively. Raman spectroscopy results corroborated the observation that prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distributions. The results of this work suggest that straightforward thermal annealing can be a facile way to obtain uniform-sized SWNTs as well as catalytic nanoparticles.  相似文献   

13.
A unique approach using the large photoacoustic effect of single‐walled carbon nanotubes (SWNTs) for targeting and selective destruction of cancer cells is demonstrated. SWNTs exhibit a large photoacoustic effect in suspension under the irradiation of a 1064‐nm Q‐switched millisecond pulsed laser and trigger a firecracker‐like explosion at the nanoscale. By using such an explosion, a photoacoustic agent is developed by functionalizing the SWNTs with folate acid (FA) that can selectively bind to cancer cells overexpressing folate receptor on the surface of the cell membrane and kill them through SWNT explosion inside the cells under the excitation of millisecond pulsed laser. The uptake pathway of folate‐conjugated SWNTs into cancer cells is investigated via fluorescence imaging and it is found that the FA‐SWNTs can enter into cancer cells selectively with a high targeting capability of 17–28. Under the treatment of 1064‐nm millisecond pulsed laser, 85% of cancer cells with SWNT uptake die within 20 s, while 90% of the normal cells remain alive due to the lack of SWNTs inside cells. Temperature changes during laser treatment are monitored and no temperature increases of more than ± 3 °C are observed. With this approach, the laser power used for cancer killing is reduced 150–1500 times and the therapy efficiency is improved. The death mechanism of cancer cells caused by the photoacoustic explosion of SWNTs is also studied and discussed in detail. These discoveries provide a new way to use the photoacoustic properties of SWNTs for therapeutic applications.  相似文献   

14.
The direct observation of drug release from carbon nanotube vehicles in living cells is realized through a unique two-dye labeling approach. Single-walled carbon nanotubes (SWNTs) are firstly marked with fluorescein isothiocyanate (FITC) to track their location and movement inside the cell. Then a fluorescent anticancer drug doxorubicin (DOX) is attached by means of π-stacking onto SWNTs. Delivered by SWNTs into cells, DOX will detach from the vehicle in an acidic environment due to the pH-dependent π-π stacking interaction between DOX and SWNTs. From observation of the two different kinds of fluorescence (green and red) that respectively represent the carrier SWNTs and drug DOX, the process of drug release inside the living cell can be monitored under a confocal microscope. Results show that the drug DOX detaches from SWNTs inside the lysosomes to yield free molecules and escape into the cytoplasm and finally into the nucleus, while the vehicle SWNTs are trapped inside the lysosomes, without entering the nucleus. The current observations confirm previously proposed mechanisms for drug/DOX release inside cells. The experimental establishment of drug-release mechanisms in living cells here might provide important insights for future design of new drug-delivery and release systems.  相似文献   

15.
Multicomponent nanocomposite materials based on a high-performance epoxy system and single-walled carbon nanotubes (SWNTs) have been prepared. The noncovalent wrapping of nitric acid-treated SWNTs with a PEO-based amphiphilic block copolymer leads to a highly disaggregated filler with a boosted miscibility in the epoxy matrix, allowing its dispersion without organic solvents. Although direct dispersion of acid-treated SWNTs results in modestly improved epoxy matrix mechanical properties, the incorporation of wrapped SWNTs produces a huge increase in toughness (276% improvement at 0.5 wt % loading) and impact strength (193% at 0.5 wt % loading) with no detrimental effect on the elastic properties. A synergistic effect between SWNTs and the block copolymer is revealed on the basis of tensile and impact strength results. Atomic force microscopy has been applied, obtaining stiffness mappings that identify nanostructure features responsible of the dynamic mechanical behavior. The electrical percolation threshold is greatly reduced, from 0.31 to 0.03 wt % SWNTs when block copolymer-wrapped SWNTs are used, and all the measured conductivity values increased up to a maximum of 7 orders of magnitude with respect to the baseline matrix (1 wt % wrapped-SWNTs loading). This approach provides an efficient way to disperse barely dispersible SWNTs without solvents into an epoxy matrix, and to generate substantial improvements with small amounts of SWNTs.  相似文献   

16.
We demonstrate the role of catalysts in the surface growth of single-walled carbon nanotubes (SWNTs) by reviewing recent progress in the surface synthesis of SWNTs. Three effects of catalysts on surface synthesis are studied: type of catalyst, the relationship between the size of catalyst particles and carbon feeding rates, and interactions between catalysts and substrates. Understanding of the role of catalysts will contribute to our ability to control the synthesis of SWNTs on various substrates and facilitate the fabrication of nanotube-based devices.   相似文献   

17.
In vitro photoacoustic therapy using modified single-walled carbon nanotubes (SWNTs) as "bomb" agents is a newly reported approach for cancer. Herein, a mitochondria-targeting photoacoustic modality using unmodified SWNTs and its in vitro and in vivo antitumor effect are reported. Unmodified SWNTs can be taken up into cancer cells due to a higher mitochondrial transmembrane potential in cancerous cells than normal cells. Under the irradiation of a 1064 nm pulse laser, 79.4% of cancer cells with intracellular SWNTs die within 20 s, while 82.3% of normal cells without SWNTs remain alive. This modality kills cancer cells mainly by triggering cell apoptosis that initiates from mitochondrial damage, through the depolarization of mitochondria and the subsequent release of cytochrome c after photoacoustic therapy. It is very effective in suppressing tumor growth by selectively destroying tumor tissue without causing epidermis injury. Taken together, these discoveries provide a new method using mitochondria-localized SWNTs as photoacoustic transducers for cancer treatment.  相似文献   

18.
Here we present an easy one-step approach to pattern uniform catalyst lines for the growth of dense, aligned parallel arrays of single-walled carbon nanotubes (SWNTs) on quartz wafers by using photolithography or polydimethylsiloxane (PDMS) stamp microcontact printing (μCP). By directly doping an FeCl3/methanol solution into Shipley 1827 photoresist or polyvinylpyrrolidone (PVP), various catalyst lines can be well-patterned on a wafer scale. In addition, during the chemical vapor deposition (CVD) growth of SWNTs the polymer layers play a very important role in the formation of mono-dispersed nanoparticles. This universal and efficient method for the patterning growth of SWNTs arrays on a surface is compatible with the microelectronics industry, thus enabling of the fabrication highly integrated circuits of SWNTs.  相似文献   

19.
采用以微流道模板为基础的流体法,成功制备了在大范围内具有高度取向的单壁碳纳米管(SWNTs)阵列。讨论了SWNTs的浓度与长度、PDMS模板的宽度与形状对SWNTs定向排列效果的影响。研究了由有序排列的SWNTs构建的场效应晶体管(FET)的电学性质,所制的p型FET的开关比达到106。此方法适用于在大范围内构建高灵敏度、宽温度范围、快速响应的SWNTs的微电子元器件。  相似文献   

20.
ZnS nanoparticles anchored on the single-walled carbon nanotubes (SWNTs) were fabricated by a chemical vapor deposition (CVD) method. The CVD method shows no selectivity for growth of ZnS nanoparticles on types and defects of the SWNTs, and thus ensures the uniform decoration of all SWNTs on the substrate. ZnS nanoparticles with a diameter of 10 nm were decorated on the SWNTs surface with an interparticle distance of about 20 nm. This method provides the possibility to realize the optimal configurations of ZnS nanoparticles on SWNTs for obtaining surface-enhanced Raman spectroscopy (SERS) of SWNTs. Investigations of mechanism reveal that charge transfer (a small amount of excitation electrons) from ZnS nanoparticles to SWNTs weakly affects Raman intensity, and the coupled surface plasmon resonance (SPR) formed from plenty of excitation electrons on the surface of ZnS nanoparticles contributes to the strong surface enhancement. It would be an alternative approach for SERS after metal (normally gold or silver) nanoparticles' decoration on the SWNTs surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号