首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 750 毫秒
1.
研究了低温等离子体表面改性处理牦牛毛对其表面性能的影响.研究结果表明,低温等离子体表面改性处理能够刻蚀牦牛毛纤维表面的鳞片,而且空气等离子体的刻蚀效果优于氧等离子体的刻蚀效果;等离子体处理不会改变牦牛毛纤维的物理性能即拉伸强度.  相似文献   

2.
研究了低温等离子体表面改性处理牦牛毛对其表面性能的影响.研究结果表明,低温等离子体表面改性处理能够刻蚀牦牛毛纤维表面的鳞片,而且空气等离子体的刻蚀效果优于氧等离子体的刻蚀效果;等离子体处理不会改变牦牛毛纤维的物理性能即拉伸强度.  相似文献   

3.
通过低温等离子体处理技术,对山羊绒纤维进行防毡缩整理.在空气条件下,制定单因素实验,研究低温等离子体处理时间对山羊绒纤维的断裂强力、断裂伸长率和摩擦性能的影响.通过扫描电子显微镜(SEM)观察改性前后纤维表面的微细结构变化.实验结果表明,经不同条件的等离子体处理后,山羊绒纤维的表面出现了不同程度的物理与化学刻蚀作用.在保证单纤维强力损失变化不大的情况下,纤维的表面防毡缩性能得到了较大的改善.当等离子体处理压强为20Pa,功率为60W时,较佳的处理时间为2min.  相似文献   

4.
超高分子量聚乙烯纤维(UHMW-PE)由于结构特性导致其粘接性很差,给高性能轻型复合材料的研制带来困难。本实验采用低温等离子体以及铬酸等对各种拉伸比的UHMW-PE纤维进行表面改性,通过纤维拔出环氧树脂基体测界面粘接强度,利用SEM观察研究了界面脱粘机理。结果表明:经等离子体处理后。界面粘接强度可提高四倍以上,其大小与纤维拉伸比及等离子体处理参数均有关;界面产生的裂纹在纤维内部沿纤维方向扩展,拔出后纤维表面层被剥掉;等离子体处理方法与化学表面处理方法相结合。可望进一步提高界面粘接强度。  相似文献   

5.
在工业化生产中,常压等离子体对基体的改性的一个潜在问题是助剂被基体吸收或包覆于基体表面上,影响等离子体表面的改性效果.以甘油涂层溶液作为吸收助剂,研究了其对常压等离子体射流(APPJ)对超高模量聚乙烯纤维(UHMPE)处理效果的影响,通过扫描电镜(SEM)和纤维粘结强度测试对纤维的表面形态和界面剪切力的变化进行了分析表征.扫描电镜显示经APPJ处理的UHMPE纤维表面粗糙度有所增加,而界面剪切力(IFSS)随涂层浓度的增加不断减小;同时,干态和湿态的等离子处理条件下,界面剪切力的下降趋势一致,说明甘油涂层的存在会削弱等离子体射流处理UHMPE纤维的刻蚀效果,并且降低纤维与树脂间的粘结性能.  相似文献   

6.
兔毛纤维采用空气低温等离子体处理,使其形态结构和理化性能发生变化。从而提高兔毛纤维的表面摩擦系数,增加纤维抱合力,提高可纺性,减少掉毛。  相似文献   

7.
本文研究了用氮气低温等离子体和甲炕低温等离子体对短纤维的处理。结果表明,纤维表面有明显刻蚀现象,并产生接枝和沉积作用、因而增大了纤维与橡胶基质的粘合力、提高了短纤维对橡胶的补强效果。  相似文献   

8.
为改善芳纶纤维复合材料的界面粘结性能,采用氧气等离子体对芳纶Ⅲ进行表面改性,制备了芳纶环氧复合材料,采用扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)分析、动态接触角(DCA)分析、测定拉伸强度、弯曲强度等测试方法来研究改性处理效果.结果表明:经等离子处理后,纤维表面m(O)/m(C)比提高,纤维表面粗糙度明显增大,与水的润湿角变小,弯曲强度较未处理提高了30%.  相似文献   

9.
采用低温等离子体对纤维表面进行处理.结果表明,处理后的纤维表面能提高,使环氧树脂能良好地浸润纤维,纤维与树脂的粘结强度提高,制成的复合材料抗冲击性能得到改善,其原因是:由表面引入的多种含氧基团所形成的化学键力,由表面刻蚀坑产生的机械嵌合力.  相似文献   

10.
探讨在羊毛不同含湿量下等离子体的处理效果及与专用的羊毛防缩整理剂联用后对毡缩性能和力学性能的影响,并通过扫描电镜(SEM)和测色系统等检测设备对改性处理后的羊毛特性进行表征与分析.结果表明:对湿态织物进行等离子体处理,羊毛纤维表面的鳞片层刻蚀更加明显,表面氧元素含量明显升高;经过等离子体处理羊毛试样的染色性能得到提高,织物的抗拉强度基本不变;与树脂进行联合整理后,防毡缩性能也会进一步得到提高.  相似文献   

11.
用Weibull评价表面处理对玻璃纤维强度影响   总被引:1,自引:1,他引:1  
破璃纤维拉伸强度的分散性与其表面随机分布缺陷的大小和数量有关。通过对纤维表面处理对其强度分散性的影响进行研究,采用Weibull统计理论对3种不同处理别处理的玻璃纤维的拉伸强度分散性进行评价。分析得出,经过表面处理的纤维强度要比未经表面处理的纤维强度高,而且分散性也比后者减小许多。  相似文献   

12.
采用了等离子体接枝和等离子体表面处理技术来改善凯夫勒纤锥的表面性质。X-射我光电子能谱、电子自旋共振谱、混性质和接触角的测试结果证明处理结果随时间延长并没有明显的老化效应。突验还表明,处理后的凯夫勒纤维抗张强度有所提高,用它制备的坏氧树脂复合材料层间剪切强度提高了60%以上。  相似文献   

13.
纤维类型对塑性混凝土基本性能的影响   总被引:1,自引:0,他引:1  
通过研究聚丙烯纤维、聚酯纤维、木质素纤维和玄武岩纤维对塑性混凝土工作、力学变形、抗渗等性能影响,发现塑性混凝土掺入纤维后:拌合物的坍落度、扩展度、泌水率均有不同程度降低,纤维的长度、吸水性及在混凝土中形成的网状结构对塑性混凝土工作性能影响显著;抗压、劈拉和抗折强度均有不同程度降低,纤维的填充作用超越了纤维与混凝土的黏结作用和纤维的吸水作用;变形性能明显改善,以聚丙烯纤维改善最为明显;相对渗透系数均有所降低,按降低作用由小到大依次为:木质素纤维、聚酯纤维、聚丙烯纤维和玄武岩纤维,纤维能在一定程度上阻止塑性混凝土内的原始裂缝,降低裂缝贯通的可能性.  相似文献   

14.
为研究低掺量钢-聚丙烯混杂纤维对高性能混凝土拉压比的影响,采用正交试验法设计了18组混杂纤维高性能混凝土试件及1组普通高性能混凝土对比试件,通过标准试验方法进行立方体抗压强度和劈裂抗拉强度试验,试验中考虑的因素主要是钢纤维的特征参数(类型、体积率、长径比)和聚丙烯纤维体积率.分析各因素对高性能混凝土拉压比的影响,结果表明:混杂纤维高性能混凝土具有明显延性破坏特征,而普通高性能混凝土表现为脆性破坏,混杂纤维的掺入使高性能混凝土的拉压比最大提高了26.2%,平均提高了9.9%.在影响高性能混凝土拉压比的四个因素中,钢纤维类型的影响最大,其次是聚丙烯纤维的体积率,影响最小的是钢纤维长径比.高性能混凝土中掺入适量钢-聚丙烯混杂纤维后,拉压比显著提高,韧性得到明显改善.  相似文献   

15.
为了改善纤维与水泥基材的界面黏结,利用低温等离子技术对芳纶纤维作表面处理,通过场发射扫描电镜(FE-SEM)观察处理前后芳纶纤维表面形貌的变化;采用二步法制备短切芳纶纤维增强水泥砂浆试样,利用万能试验机测试低温等离子处理前后试样的弯曲强度的变化。结果表明:低温等离子处理能够有效地改善芳纶纤维的表面形貌;当处理功率为100 W时,芳纶/水泥砂浆复合材料试样的弯曲强度从8.3 MPa提高到了10.5 MPa,提高了26.4%;当处理时间为20 min时,试样的弯曲强度从8.3 MPa增加到9.7 MPa;继续提高处理功率和延长处理时间,试样的弯曲强度反而下降。  相似文献   

16.
玄武岩纤维强度的统计分析   总被引:1,自引:0,他引:1  
玄武岩纤维抗拉强度受限于各类缺陷,缺陷随机分布,其拉伸强度呈现出多分散性,分散性可用Weibull理论评价。本文采用Weibull理论及方法处理实验教据,计算出玄武岩纤维强度的二参数和三参数Weibull模数m,并阐述Weibull模数m与力学性能之间的关系。由统计数据结果得知,用三参数的Weibull分布可较好地表征玄武岩纤维的强度。通过扫描电镜观察了纤维表面形态,对其与玻璃纤维的强度差异做出解释。  相似文献   

17.
通过试验研究了弹性模量具有明显差异的3种纤维对于混凝土的力学性能改善所起的作用,以及钢纤维、碳纤维和聚丙烯纤维单掺或复掺对于混凝土的抗压强度、劈裂抗拉强度和弹性模量的影响。结果表明:添加0.5%高弹性模量的钢纤维对于混凝土的强度和弹性模量均有提高作用,复掺0.3%钢纤维和0.2%碳纤维的混凝土抗拉强度的提高大于抗压强度;添加0.5%钢纤维的混凝土HPC-2的弹性模量最大,比基准混凝土提高6.5%;添加0.2%聚丙烯纤维的混凝土HPC-3的弹性模量最小,且小于基准混凝土;此外,混凝土抗压强度的影响程度与纤维的弹性模量的关系更为直接,混凝土劈裂抗拉强度的改善与纤维的抗拉强度的关系更为直接,纤维的弹性模量与基体弹性模量的比值,对复合材料的弹性模量有直接的影响。  相似文献   

18.
假发纤维拉伸力学性能探讨   总被引:1,自引:0,他引:1  
以目前市售的几种假发原料为测试样品,探讨了各自在干、湿状态下纤维的拉伸性能;分析了真人发的强伸性能及其影响因素,包括不同轴向部位、不同拉伸速度、不同夹持长度以及不同处理方式的影响.实验结果表明,胶原蛋白/PAN共混纤维假发与真人发在干态条件下的拉伸性能较为接近;在湿态下,真人发具有比其他假发纤维大的伸长率,保形性较好;速度与夹持长度对人发纤维的强伸性能有明显的影响;人发经强化梳理后,断裂强度与伸长略有下降,而皮质部分受损的人发纤维,强伸性能显著下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号