首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well-known that IIR filters can have a much lower order than FIR filters with the same performance. On the downside is that the implementation of an IIR filter is an iterative procedure while that of an FIR filter is a one-shot computation. But in higher dimensions IIR filters are definitely more attractive. We offer a technique where the filter’s performance specifications, stability constraints, its convergence speed and a protection against possible adverse effects of perturbations are all included in the design from the start. The technique only needs an off-the-shelf LP solver because the filter is obtained as a Chebyshev center of a convex polytope. The method deals with general non-causal non-separable filters.  相似文献   

2.
Optical half-band filters   总被引:4,自引:0,他引:4  
This paper proposes two kinds of novel 2×2 circuit configuration for finite-impulse response (FIR) half-band filters. These configurations can be transformed into each other by a symmetric transformation and their power transmittance is identical. The configurations have only about half the elements of conventional FIR lattice-form filters. We derive a design algorithm for achieving desired power transmittance spectra. We also describe 2×2 circuit configurations for infinite-impulse response (IIR) half-band filters. These configurations are designed to realize arbitrary-order IIR half-band filter characteristics by extending the conventional half-band circuit configuration used in millimeter-wave devices. We discuss their filter characteristics and confirm that they have a power half-band property. We demonstrate design examples including FIR maximally flat half-band filters, an FIR Chebyshev half-band filter, and an IIR elliptic half-band filter  相似文献   

3.
This paper first presents the fundamental principles of the microwave photonic filters.As an example to explain how to implement a microwave photonic filter, a specific finite impulse response (FIR) filter is illustrated.Next, the Q value of the microwave photonic filters is analyzed theoretically, and methods around how to gain high Q value are discussed.Then,divided into FIR filter, first-order infinite impulse response (IIR) filter, and multi-order IIR filter, several novel microwave photonic filters with high Q value are listed and compared.The technical difficulties to get high Q value in first-order IIR filter and multi-order IIR filter are analyzed concretely.Finally, in order to gain higher Q value, a multi-order IIR microwave photonic filter that easily extends its order is presented and discussed.  相似文献   

4.
Perfect linear-phase two-channel QMF banks require the use of finite impulse response (FIR) analysis and synthesis filters. Although they are less expensive and yield superior stopband characteristics, perfect linear phase cannot be achieved with stable infinite impulse response (IIR) filters. Thus, IIR designs usually incorporate a postprocessing equalizer that is optimized to reduce the phase distortion of the entire filter bank. However, the analysis and synthesis filters of such an IIR filter bank are not linear phase. In this paper, a computationally simple method to obtain IIR analysis and synthesis filters that possess negligible phase distortion is presented. The method is based on first applying the balanced reduction procedure to obtain nearly allpass IIR polyphase components and then approximating these with perfect allpass IIR polyphase components. The resulting IIR designs already have only negligible phase distortion. However, if required, further improvement may be achieved through optimization of the filter parameters. For this purpose, a suitable objective function is presented. Bounds for the magnitude and phase errors of the designs are also derived. Design examples indicate that the derived IIR filter banks are more efficient in terms of computational complexity than the FIR prototypes and perfect reconstruction FIR filter banks. Although the PR FIR filter banks when implemented with the one-multiplier lattice structure and IIR filter banks are comparable in terms of computational complexity, the former is very sensitive to coefficient quantization effects  相似文献   

5.
This paper presents an indirect linear-phase IIR filter design technique based on a reduction of linear-phase FIR filters. The desired filter is obtained by minimizing the L2 norm of the difference between the original FIR filter and the lower order IIR filter. We first establish a relationship between the Hankel singular values of the discarded part of the FIR filter and the L2 norm of the corresponding filter approximation error based on model truncation. This result motivates us to propose a simple finite search method that will achieve better approximation results than commonly used truncation methods such as the balanced truncation (BT) and the impulse response gramian (IRG) methods. We then develop an iterative algorithm for finding an optimal IIR filter based on a matrix projection of the original FIR filter. The convergence of the proposed algorithm is established. Filters designed using the proposed algorithm are compared with those obtained by other techniques with respect to the amplitude response and group delay characteristics in the passband. Numerical examples show that the proposed algorithm offers the best performance  相似文献   

6.
A technique for realizing linear phase IIR filters   总被引:2,自引:0,他引:2  
A real-time IIR filter structure is presented that possesses exact phase linearity with 10~1000 times fewer general multiplies than conventional FIR filters of similar performance and better magnitude characteristics than equiripple or maximally flat group delay IIR filters. This structure is based on a technique using local time reversal and single pass sectioned convolution methods to realized a real-time recursive implementation of the noncausal transfer function H(z-1). The time reversed section technique used to realize exactly linear phase IIR filters is described. The effects of finite section length on the sectional convolution are analyzed. A simulation methodology is developed to address the special requirements of simulating a time reversed section filter. A design example is presented, with computer simulation to illustrate performance, in terms of overall magnitude response and phase linearity, as a function of finite section length. Nine example filter specifications are used to compare the performance and complexity of the time reversed section technique to those of a direct FIR implementation  相似文献   

7.
An algorithm for designing an infinite-impulse-response (IIR) stable filter using a finite-impulse-response (FIR) given filter, with the objective of reducing the delay and order, is described. The design is in the time domain using the least-squares-inverse algorithm, which is briefly described. In this method, the numerator of the approximated filter is part of the FIR filter itself and no calculations and minimization are needed to find the numerator coefficients (except finding the FIR roots). An error analysis between the given FIR and approximated IIR filters is provided. This error analysis enables the designer to fix a design parameter, often unnoted, keeping the energies of the approximated and original filters equal. Results and two illustrative examples are presented  相似文献   

8.
Fundamental constraints on the form of infinite impulse response (IIR) periodically time-varying (PTV) filters are identified, and a design technique with well-defined error and stability characteristics based on those constraints is presented. The design technique is based on the selection of poles and zeros within the time-invariant filter banks of equivalent PTV filter analysis structures. A simple example is presented to illustrate the design method, which implements the IIR PTV as a time-invariant all-feedback IIR filter of the form 1/D(zP) cascaded with an finite impulse response (FIR) PTV filter. An application of IIR PTV filters to telecommunications transmultiplexing is presented to illustrate the design method and for comparison to an existing PTV design method. The computational complexity of the resulting system compares favorably with that of existing transmultiplexers  相似文献   

9.
A new method for the design of a linear-phase infinite-impulse-response (IIR) filter is presented. It involves designing a finite-impulse-response (FIR) filter satisfying the given frequency response specifications and subsequently obtaining a significantly lower order IIR filter using model reduction based on impulse-response gramians. The general outline of the method and a brief overview of the existing linear-phase FIR filter design and model-reduction techniques are presented. The impulse-response gramian and the model-reduction algorithm used are presented. The method is illustrated by design examples and is compared with other methods for the design of linear-phase IIR filters using equalizers  相似文献   

10.
It is shown that vertex implication results in parameter space apply to interval trigonometric polynomials. Subsequently, it is shown that the frequency responses of both interval FIR and IIR filters are bounded by the frequency responses of certain extreme filters. The results apply directly in the evaluation of properties of designed filters, especially because it is more realistic to bound the filter coefficients from above and below instead of determining those with infinite precision because of finite arithmetic effects. Illustrative examples are provided to show how the extreme filters might be easily derived in any specific interval FIR or IIR filter design problem  相似文献   

11.
A general design algorithm is presented for infinite impulse response (IIR) bandpass and arbitrary magnitude response filters that use optical all-pass filters as building blocks. Examples are given for an IIR multichannel frequency selector, an amplifier gain equalizer, a linear square-magnitude response, and a multi-level response. Major advantages are the efficiency of the IIR filter compared to finite impulse response (FIR) filters, the simplicity of the optical architecture, and its tolerance for loss. A reduced set of unique operating states is discussed for implementing a reconfigurable multichannel selection filter  相似文献   

12.
It is well known that IIR digital filters require quite fewer computations,comparedwith FIR filters,in order to meet stringent magnitude specifications when the phase distortioncan be tolerated.An approximately linear phase,however,can be also obtained with the IIRfilter by making use of a technique without increasing the complexity.Based on a certain numberof attenuation zeros in the pass band,a new approach is developed for the design of polyphasewave digital filters with exact magnitude responses and Chebyshev approximation of the desiredphase responses.The minimum number of attenuation zeros is estimated,and some examples areincluded.  相似文献   

13.
We have developed an algorithm based on synthetic division for deriving the transfer function that cancels the tail of a given arbitrary rational (IIR) transfer function after a desired number of time steps. Our method applies to transfer functions with repeated poles, whereas previous methods of tail-subtraction cannot. We use a parallel state-variable technique with periodic refreshing to induce finite memory in order to prevent accumulation of quantization error in cases where the given transfer function has unstable modes. We present two methods for designing linear-phase truncated IIR (TIIR) filters based on antiphase filters. We explore finite-register effects for unstable modes and provide bounds on the maximum TIIR filter length. In particular, we show that for unstable systems, the available dynamic range of the registers must be three times that of the data. Considerable computational savings over conventional FIR filters are attainable for a given specification of linear-phase filter. We provide examples of filter design. We show how to generate finite-length polynomial impulse responses using TIIR filters. We list some applications of TIIR filters, including uses in digital audio and an algorithm for efficiently implementing Kay's optimal high-resolution frequency estimator  相似文献   

14.
15.
A new procedure for the design of a real doubly complementary (DC) pair of digital filters obtained from an all-pass structure is presented. The filter design is based on a zero-phase FIR filter design with multi-band frequency specifications and approximate linear-phase characteristic. The resulting complex or real all-pass filter structure is guaranteed to be stable. Some examples illustrating the design method including comparisons with conventional approximately linear phase IIR filters are also shown  相似文献   

16.
Adaptive Laguerre-lattice filters   总被引:1,自引:0,他引:1  
Adaptive Laguerre-based filters provide an attractive alternative to adaptive FIR filters in the sense that they require fewer parameters to model a linear time-invariant system with a long impulse response. We present an adaptive Laguerre-lattice structure that combines the desirable features of the Laguerre structure (i.e., guaranteed stability, unique global minimum, and small number of parameters M for a prescribed level of modeling error) with the numerical robustness and low computational complexity of adaptive FIR lattice structures. The proposed configuration is based on an extension to the IIR case of the FIR lattice filter; it is a cascade of identical sections but with a single-pole all-pass filter replacing the delay element used in the conventional (FIR) lattice filter. We utilize this structure to obtain computationally efficient adaptive algorithms (O(M) computations per time instant). Our adaptive Laguerre-lattice filter is an extension of the gradient adaptive lattice (GAL) technique, and it demonstrates the same desirable properties, namely, (1) excellent steady-state behavior, (2) relatively fast initial convergence (comparable with that of an RLS algorithm for Laguerre structure), and good numerical stability. Simulation results indicate that for systems with poles close to the unit circle, where an (adaptive) FIR model of very high order would be required to meet a prescribed modeling error, an adaptive Laguerre-lattice model of relatively low order achieves the prescribed bound after just a few updates of the recursions in the adaptive algorithm  相似文献   

17.
Aiming at the deviation of pole and zero in filters which caused by the finite word length (FWL) effects,the sensitivity of pole and zero for FIR digital filters to coefficient errors was studied based on the state-space model.Unlike the IIR filter,the system matrix in state-space model of the FIR filter was defective.A set of generalized eigenvectors of defective matrix was introduced to analyze the pole sensitivity and derive the measure expression,and optimal realizations with respect to pole-zero sensitivity for FIR filters were proposed by finding optimal transformation matrices according to the similarity transformation theory.Theoretical analysis and simulation experiments show that the poles of a FIR filter are more sensitive to coefficient errors,and the proposed optimal realizations can reduce the sensitivity.  相似文献   

18.
19.
Generalized feedforward filters, a class of adaptive filters that combines attractive properties of finite impulse response (FIR) filters with some of the power of infinite impulse response (IIR) filters, are described. A particular case, the gamma filter, generalizes Widrow's adaptive transversal filter (adaline) to an infinite impulse response filter. Yet, the stability condition for the gamma filter is trivial, and LMS adaptation is of the same computational complexity as the conventional transversal filter structure. Preliminary results indicate that the gamma filter is more efficient than the adaptive transversal filter. The authors extend the Wiener-Kopf equation to the gamma filter and develop some analysis tools  相似文献   

20.
An improved systolic architecture for two-dimensional infinite-impulse response (IIR) and finite-impulse-response (FIR) digital filters is presented. Comparisons with recently published work are made. When compared with the architecture of M.A. Sid-Ahmed (1989), a substantial reduction in the number of delay elements is observed. This reduction is of the order of 102 for a 2-D IIR filter and equals N+1 for an Nth-order 2-D FIR filter. The clock period has been made independent of the order of the filter. The speed-up factor is the maximum achievable and is independent of the filter order. Comparison with the work of S. Sunder et al. (1990) shows an improvement in the latency of the systolic array, which has been reduced from 1 to 0. A reduction of N+1 delay elements has been achieved for the FIR filter. An error analysis for the architecture is made  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号