首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The jet stretch of wet‐spun PAN fiber and its effects on the cross‐section shape and properties of fibers were investigated for the PAN‐DMSO‐H2O system. Evidently, the spinning parameters, such as dope temperature, bath concentration, and bath temperature, influenced the jet stretch. Also, under uniform conditions, the postdrawing ratio changed as well as that of jet stretch. When coagulation temperature was 35°C simultaneously with bath concentration of 70%, jet stretch impacted obviously the cross‐section shapes of PAN fiber, but had little effect when the temperature was below 10°C or above 70°C. As the jet stretch ratio increased, the crystallinity, crystal size, sonic orientation, and mechanical properties of the as‐spun fiber changed rapidly to a major value for jet stretch ratio of 0.9 where the cross section of as‐spun fiber was circular. With further increasing of jet stretch ratio, the properties changed slightly but the fiber shape was not circular. The results indicated that appropriate jet stretch, under milder formation conditions in wet‐spinning, could result in the higher postdrawing ratio and circular profile of PAN fiber, which were helpful to produce round PAN precursor with minor titer and perfect properties for carbon fiber. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
The spinnability of a spinning solution using DMSO as the solvent was investigated for dry‐jet wet spinning of PAN precursor fiber. Among many variables responsible for spinnability, the coagulating conditions, the air gap length, the nonsolvent content in spinning solution, and the spinning temperature have been viewed as the key factors, and they were investigated in this study. It was found however, unlike in the wet spinning, the spinnability in dry‐jet wet spinning process was barely influenced by the coagulating conditions, likely attributable to the existence of the air gap. However, the spinnability worsened when the air gap was longer than 30 mm. The quality of the spinning solution deteriorated with the increasing water content in it. The spinnability improved when the spinning temperature was maintained between 60 and 72°C and turned down once the temperature was over 72°C. The experimental results indicated that all the factors should be comprehensively considered to ensure good spinnability in dry‐jet wet spinning process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The dry–jet–wet spinning process was employed to spin poly(lactic acid)(PLA) fiber by the phase inversion technique using chloroform and methanol as solvent and nonsolvent, respectively, for PLA. The as spun fiber was subjected to two‐stage hot drawing to study the effect of various process parameters, such as take‐up speed, drawing temperature, and heat‐setting temperature on the fiber structural properties. The take‐up speed had a pronounced influence on the maximum draw ratio of the fiber. The optimum drawing temperature was observed to be 90°C to get a fiber with the tenacity of 0.6 GPa for the draw ratio of 8. The heat‐setting temperature had a pronounced effect on fiber properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3774–3780, 2006  相似文献   

4.
Poly(lactic acid) fiber was prepared by dry‐jet‐wet spinning of the polymer from chloroform solution and with methanol as the precipitating medium. The as‐spun fiber was subsequently made into high strength fiber by two‐step process of drawing at a temperature of 90°C and subsequent heat setting in the temperature range of 120°C. The draw ratio had significant influence on the crystallinity and the tensile strength of the fiber. The fiber with the tenacity of 0.6 GPa and modulus of 8.2 GPa was achieved at a draw ratio of 8. The differential scanning calorimetry revealed an increase in the glass‐transition temperature with the increase in the draw ratio, which suggests the orientation of chains during the drawing process. The surface morphology of the filament as revealed by scanning electron microscopy shows that fibers are porous in nature, but a significant reduction in the porosity and pore size of the fiber was observed with the increase in the draw ratio. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1239–1246, 2006  相似文献   

5.
DMSO湿法PAN纤维截面形状形成条件的研究   总被引:3,自引:0,他引:3  
对DMSO(二甲基亚砜)湿法制备PAN(聚丙烯腈)纤维的截面形状的形成因素进行了研究。随着凝固浴浓度的增大和温度的升高,纤维截面形状由椭圆形或肾形逐渐变为圆形。当凝固浴浓度在一定范围(55%-70%)时,不同凝固浴浓度对应一个凝固浴温度下限值,在该下限温度以上都可得到圆形截面纤维,且凝固浴浓度越低,此下限温度越高。纤维离开凝固浴后,截面形状基本形成并固定,水洗、拉伸、喷丝速度和干燥对纤维截面形状的形成影响都很小。  相似文献   

6.
对干湿法纺丝中PAN纤维的截面形状影响因素进行了研究。研究发现,凝固浴浓度和温度是影响纤维截面的主要因素,随着凝固浴浓度的增大和温度的升高,纤维截面逐渐由扁平形变为圆形,纤维截面的异形度逐渐减小;干湿法比湿法纺丝更有利于得到圆形截面的纤维;随着空气层高度的增大,纤维截面的异形度减小,但当空气层高度超过10mm时,纤维截面形状不再变化;在一定条件下,喷丝头拉伸比对纤维的截面形状有一定影响,后拉伸过程和干燥对纤维截而形状基本上没影响。  相似文献   

7.
Sugarcane bagasse, a cheap cellulosic waste material, was investigated as a raw material for producing lyocell fibers at a reduced cost. In this study, bagasse was dissolved in N‐methylmorpholine‐N‐oxide (NMMO) 0.9 hydrate, and fibers were prepared by the dry jet‐wet spinning method with coagulation in an aqueous NMMO solution. The effects of NMMO in 0 to 50% concentrations on the physical properties of fibers were investigated. The coagulating bath contained water/NMMO (10%) solution produced fiber with the highest drawability and highest physical properties. The cross‐section morphology of these fibers reveals fibrillation due to the high degree of crystallinity and high molecular orientation. In the higher NMMO concentrated baths (30 to 50%), the prepared fibers were hollow inside, which could be useful to make highly absorbent materials. The lyocell fibers prepared from bagasse have a tensile strength of 510 MPa, initial modulus of 30 GPa, and dynamic modulus of approximately 41 GPa. These properties are very comparable with those of commercial lyocell fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
In this article, the effect of jet stretch ratio on the extrudate die‐swell effect of polyacrylonitrile spinning solution and the structure and properties of as‐spun fibers was systematically analyzed by means of X‐ray diffraction (XRD), electron microprobe analysis, and the measurement of die‐swell ratio, boiling‐water shrinkage, porosity, mechanical properties analysis, etc. It revealed the formation mechanism of the die‐swell effect and spin orientation and its influences on the structure and properties of as‐spun fibers. It showed that with the increase of the jet stretch ratio the die‐swell ratio became smaller, both the degree of spin orientation and the crystallinity increased, the microstructure of as‐spun fibers became compact and homogeneous, and the cross section tended to be circular. As a result, the breaking tenacity of as‐spun fibers and resultant precursors all increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3348–3352, 2007  相似文献   

9.
对二甲基亚砜(DMSO)干湿法制备三角形截面聚丙烯腈(PAN)基碳纤维原丝的截面形成因素进行了研究,并比较了不同条件下纤维的性能。结果表明:在干湿法纺制三角形截面PAN基碳纤维原丝过程中,凝固浴条件对PAN纤维的截面影响非常明显,同时凝固浴条件和拉伸条件对纤维的力学性能也有非常显著的影响。  相似文献   

10.
The effect of coagulation bath condition on the structure and property of the nascent fibers and polyacrylonitrile fibers during wet‐spinning is studied. The best coagulation condition to produce polyacrylonitrile fibers has been found by examination of EA, XRD, SEM, and so on. The results indicated that when the coagulation bath was DMSO/H2O system, the temperature was 60°C, the concentration was 65%, the minus stretch ratio was ?10%, fine crystallites and high degree of crystallization in the nascent fibers and polyacrylonitrile fibers could be achieved, and less solvents remained in the nascent fibers with circular cross section morphology. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

11.
N‐(2‐Hydroxy)propyl‐3‐trimethylammonium chitosan chloride (HTCC) was synthesized by the reaction of glycidyltrimethylammonium chloride (GTMAC) and chitosan. The reaction product was a water‐soluble chitosan derivative, and showed excellent antimicrobial activity. HTCC was blended with polyacrylonitrile (PAN) using an NaSCN aqueous solution as a common solvent. The blend solution was transparent and stable up to 6 months without phase separation. The PAN/HTCC blend fibers were prepared via a wet spinning and drawing process. Thermal, electrical, and mechanical properties as well as antimicrobial activity were investigated. It was found that the antistatic property and antimicrobial activity of the blend fibers could be achieved by adding only a small amount of HTCC. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2258–2265, 1999  相似文献   

12.
Cellulose hollow fiber membranes (CHFM) were prepared using a spinning solution containing N‐methylmorpholine‐N‐oxide as solvent and water as a nonsolvent additive. Water was also used as both the internal and external coagulant. It was demonstrated that the phase separation mechanism of this system was delayed demixing. The CHFM was revealed to be homogeneously dense structure after desiccation. The gas permeation properties of CO2, N2, CH4, and H2 through CHFM were investigated as a function of membrane water content and operation pressure. The water content of CHFM had crucial influence on gas permeation performance, and the permeation rates of all gases increased sharply with the increase of membrane water content. The permeation rate of CO2 increased with the increase of operation pressure, which has no significant effect on N2, H2, and CH4. At the end of this article a detailed comparison of gas permeation performance and mechanism between the CHFM and cellulose acetate flat membrane was given. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1873–1880, 2004  相似文献   

13.
The wet spinning of chitosan fibers was studied with 2% acetic acid as the solvent, 10% aqueous sodium hydroxide as the nonsolvent, and a 4% chitosan solution as the polymer. This article describes the crosslinking of the chitosan fibers. Epichlorohydrin (ECH) was selected as a convenient base‐catalyzed crosslinking agent. The coagulation and crosslinking of the chitosan fibers occurred simultaneously in the coagulation bath. In this study, we investigated the effect of the concentration of the crosslinking agent, ECH, in the spinning dope on the structural, thermal, morphological, and mechanical properties (e.g., the tenacity, elongation, and work of rupture) of chitosan fibers. The tenacity of the chitosan fibers, especially the wet tenacity, was improved by crosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2054–2062, 2004  相似文献   

14.
15.
Polyvinylidene fluoride hollow fibers were prepared by melt‐spinning technique under three spinning temperatures. The effects of annealing treatment on the structure and properties of hollow fiber were studied by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), tensile test, and scanning electron microscopy (SEM) measurements. DSC and WAXD results indicated that the annealing not only produced secondary crystallization but also perfected primary crystallization, and spinning and annealing temperature influenced the crystallinity of hollow fiber: the crystallinity decreased with the increase of spinning temperature; 140°C annealing increased the crystallinity, and hardly influenced the orientation of hollow fiber; above 150°C annealing increased the crystallinity as well, and furthermore had a comparative effect on the orientation. The tensile tests showed that the annealed samples, which did not present the obvious yield point, exhibited characteristics of hard elasticity, and all the hollow fiber had no neck phenomenon. Compared with the annealed sample, the precursor presented a clear yield point. In addition, the annealed samples had a higher break strength and initial modulus by contrast with the precursor, and the 140°C annealed sample showed the smallest break elongation. SEM demonstrated the micro‐fiber structure appeared in surface of drawn sample. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 935–941, 2007  相似文献   

16.
To enhance the thermal stability of poly(vinyl alcohol) (PVA) fiber, the fiber was prepared from the gel spinning of high molecular weight (HMW) PVA by using dimethyl sulfoxide/water (8/2, v/v) as a solvent, accompanied with the cross‐link by boric acid (B‐PVA). In addition, the structure and properties of the B‐PVA fiber were compared with those of the HMW PVA fiber obtained by using the same spinning system without cross‐linking (NB‐PVA). Through a series of experiments, it turned out that cross‐linking actualized by an optimum amount of boric acid (0.3 wt % based on PVA) and zone drawing caused significant changes in the properties of HMW PVA gel fiber. That is, cross‐linking increased thermal degradation temperatures at each degradation step and amounts of final residues, resulting in improving thermal properties of the PVA fiber. On the contrary, it was found that in the case of the B‐PVA fiber, some broadening of the original PVA unit cell occurred, which was identified by the peak shift to lower angle in X‐ray diffractogram. The tensile strength and Young's modulus of B‐PVA fiber with draw ratio of 15 are 23.1 and 308.3 g/d, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The effects of noncircular cross‐section (NCCS) poly ethylene terephthalate (PET) filaments and its shape factor on deep‐black‐coloring of dyed fabrics were investigated by comparing to that of the circular cross‐section PET ones. Indexes such as K/S, L* and Integ values were used for characterizing the deep‐black‐coloring effect on fabrics. The results indicated that fabrics made with NCCS PET filaments exhibited good deep‐black‐coloring effects. The calculated shape factor of the NCCS PET fiber had a significant correlation with the degree of deep‐black‐coloring exhibited by the fabric made from the fibers. A qualitative optical analysis of the NCCS PET fibers was carried out to explain the causes of the deep‐coloring of the NCCS fibers. This analysis implies that the contours of the NCCS fiber composed of surfaces with varied curvature increase the scattering of light by lowering specular reflection and increasing interior reflected and refracted light. This, in turn, strengthens the deep‐coloring effect. © 2013 Wiley Periodicals, Inc. Col Res Appl, 39, 511–518, 2014  相似文献   

18.
In this article we report a new chelating fiber that was prepared from a hydrolyzate of poly(N‐vinylformamide/acrylonitrile) by a wet‐spinning method. This fiber contains chelating groups, such as amidine groups, amino groups, cyano groups, and amide groups, with high densities. We examined the chelating abilities for several metal ions with this fiber, and present the morphological merit of the fibrous product compared with the globular resin. Based on the research results, it is shown that the fiber has higher binding capacities and better adsorption properties for heavy metal ions than the resin. The pH value of the metal ion solution shows strong influences on the adsorption of the metal ions. The maximum adsorption capacities of the fiber for Cu2+, Cr3+, Co2+, Ni2+, and Mn2+ are 112.23, 88.11, 141.04, 108.06, and 73.51 mg/g, respectively. In mixed metal ions solution, the fiber adsorbs Cr3+, Cu2+ and Co2+ efficiently. The adsorbed metal ions can be quantitatively eluted by hydrochloric acid. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1378–1386, 2002  相似文献   

19.
This note considers a panel data model in which the variable of interest has undergone a common structural break in the mean. The object of interest is the unknown breakpoint. The challenge is to device an estimator that is consistent when the data are cross‐correlated and the number of time periods T is fixed and cannot be increased without bound. The proposed solution involves taking an already existing estimator initially proposed for cross‐section uncorrelated panels and applying it to defactored data. Consistency is established as the number of cross‐section units N grows large, and is verified in small samples using Monte Carlo simulation.  相似文献   

20.
On‐line measurement was performed in the high‐speed spinning of flat, hollow, and circular fibers of poly(ethylene terephthalate), paying particular attention to the change in cross‐sectional shape along the spin line. The diameter profiles of hollow and circular fibers were essentially identical, whereas the deformation of flat fiber shifted to the region closer to the spinneret. The necklike deformation of hollow and circular fibers started at the takeup velocity of 5 km/min. In the case of flat fibers, presence of the necklike deformation was confirmed at 4 km/min, and extremely steep diameter attenuation was observed at 5 km/min. The spin‐line tension of the flat fiber was also larger than that of circular fibers. Combined measurements of fiber velocity and thickness enabled us to evaluate the aspect ratio of the flat fiber and hollow ratio of the hollow fiber in the spin line. These two factors were found to decrease steeply near the spinneret. Accordingly, the thinning of the spin line and the change in cross‐sectional shape appeared to proceed independently. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1582–1588, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号