首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supported gold catalysts, e.g., Au on Al2O3, Fe2O3, CeO2, MnO2, TiO2, ZrO2, activated carbon, titanium silicalite TS‐1, were prepared and used for the isomerization of linoleic acid (cis‐9,cis‐12‐octadecadienoic acid) to conjugated linoleic acids (CLA) in the presence of hydrogen at 165 °C in a batch reactor. The best results were obtained using a catalyst with 2 wt % Au on TS‐1, which exhibits a high selectivity (78 %) towards CLA. The two biologically active target CLA isomers, i.e., cis‐9,trans‐11‐CLA and trans‐10,cis‐12‐CLA, were the main products. During the isomerization of linoleic acid to CLA, consecutive reactions also took place. These were the hydrogenation of linoleic acid and CLA to monounsaturated octadecenoic acids and the further hydrogenation of monounsaturated acids to stearic acid. Thus, gold catalysts are capable of isomerizing linoleic acid to CLA and hydrogenating their double bonds to an extent that depends on the Au catalyst used.  相似文献   

2.
Conditions were found for reducing tall oil distillate to an iodine number of 22 with a sufficiently small amount of palladium catalyst to make the process commereially feasible. The operating conditions were 200°C and 2,600 psi. Tall oil fatty acids were reduced with palladium and the concentration of linoleic acid,cis-oleic acid, saturated acid, andtrans isomers were determined as a function of iodine number. The five-platinum group metals (Pt, Pd, Ir, Rh, Ru) were compared as to activity, selectivity of partial hydrogenation, and tendeney to formtrans-isomers.  相似文献   

3.
The straightforward synthesis of a new donor‐stabilized phosphenium ligand 3d by addition of bromodifurylphosphine to 1,3‐dimethylimidazolium‐2‐carboxylate 1 is described. The obtained ligand exhibits a very strong π‐acceptor character, comparable to that of triphenyl phosphite [P(OPh)3] or of tris‐halogenophosphines, with a νCO(A1) at 2087 cm−1 for its nickel tricarbonyl complex. This ligand, as well as the related 3a which was obtained from chlorodiphenylphosphine, were tested in palladium‐catalyzed aryl alkynylation and in the platinum‐catalyzed selective hydrogenation of chloronitrobenzenes, both in an ionic liquid phase. In C C bond cross‐coupling we observed that the increase of the π‐acceptor character in ligand 3d , due to the introduction of an additional electron‐withdrawing group, provides a very efficient catalyst in the alkynylation reaction of aryl bromides with phenylacetylene, including the deactivated 4‐bromoanisole or the sterically hindered 2‐bromonaphthalene. The catalytic activity decreases with recycling due to the sensitiveness of ligands to protonation in the ionic phase. Conversely, a multiple recycling of the metal/ligand system in non‐acidic media was achieved from platinum‐catalyzed hydrogenation of m‐chloronitrobenzene. The catalytic results obtained by employing the complex of platinum(II) chloride with 3a [trans‐PtCl2( 3a )2] in comparison with the non‐ionic related trans‐tris(triphenylphosphine)platinum dichloride [trans‐PtCl2(PPh3)2] complex clearly indicate that the simultaneous existence of a strong π‐acceptor character and a positive charge within the ligand 3a significantly increases the life‐time of the platinum catalyst. The selectivity of the reaction is also improved by decreasing the undesirable formation of dehalogenation products. This cationic platinum complex trans‐PtCl2( 3a )2 is the first example of a highly selective catalyst for hydrogenation of chloronitroarenes immobilized in an ionic liquid phase. The system was recycled six times without noticeable metal leaching in the organic phase, and no loss of activity.  相似文献   

4.
In the present work, Pt/γ-Al2O3 catalysts with high metal dispersion were prepared and characterized using chloroplatinic acid and platinum acetylacetonate as metal precursors. The activity and selectivity of the catalysts were evaluated in the hydrogenation of sunflower oil. A comprehensive analysis of the effects of key operational parameters on catalytic performance was carried out. The experimental variables were hydrogen pressure (275.8–551.6 kPa), temperature (160–200°C), and catalyst loading (0.005–0.015 kg Ptexp/m3oil). Platinum catalysts were active, with a double bond conversion of 28% at 2 h. The metal precursor affected catalyst selectivity. The catalyst prepared with chloroplatinic acid exhibited a lower formation of trans-isomers compared with Pt acetylacetonate. The γ-Al2O3 supported platinum catalyst with a metal loading of 0.51 wt.% and a metal dispersion of 98% maintained its initial catalyst activity and selectivity after 10 consecutive uses (1200 min accumulate operation time), without changes in its catalytic properties. The obtained results suggested that Pt catalysts are an attractive alternative to conventional nickel catalysts for the hydrogenation of vegetable oil.  相似文献   

5.
A statistical method for evaluation of catalysts was used to determine the behavior of palladium catalyst for soybean oil hydrogenation. Empirical models were developed that predict the rate,trans-isomer formation, and selectivity over a range of practical reaction conditions. Two target iodine value (IV) ranges were studied: one range for a liquid salad oil and the other for a margarine basestock. Although palladium has very high activity, it offered no special advantage intrans-isomer formation or selectivity. Palladium can substitute for nickel catalyst, at greatly reduced temperature and catalyst concentrations, for production of salad oil or margarine basestock from soybean oil. Presented at the AOCS meeting, Chicago, May 1983.  相似文献   

6.
Empirical modeling of soybean oil hydrogenation   总被引:2,自引:0,他引:2  
Empirical hydrogenation models were generated from statistically designed laboratory experiments. These models, consisting of a set of polynomial equations, relate the operating variables of soybean oil hydrogenation to properties of the reaction and of the fat produced. These properties include reaction rate,trans-isomer content and melting point. Operating variables included in the models were temperature, hydrogen pressure, catalyst concentration, agitation rate and iodine value. The effects of catalyst concentration and agitation rate were found to be significant in determiningtrans-isomer content, which in turn influences the melting characteristics of the hydrogenated oil. Pressures above 30 psig were found to have little effect ontrans-isomer content, although pressure was very important in determining reaction rate. Reaction temperature was observed as the most important factor in determining thetrans-isomer content for a given iodine value. Generally, 50 to 60%trans isomer content is predicted by the model for the iodine value range and operating conditions used in this study. Thus, these predictive models can assist in scaling up hydrogenation processes and in determining the optimum operating parameters for running commercial hydrogenation. Presented at the AOCS Meeting, Chicago, May 1983.  相似文献   

7.
In this contribution, an evaluation of the potential of various homogeneous and heterogeneous catalysts for a selective hydrogenation of fatty nitriles toward primary amines is reported exemplified for the conversion of octanenitrile into octane‐1‐amine as a model reaction. When using heterogeneous catalysts such as the ruthenium catalyst Ru/C, the palladium catalyst Pd/C, and the platinum catalyst Pt/Al2O3, low selectivities in the hydrogenation are observed, thus leading to a large portion of secondary and tertiary amine side‐products. For example, when using Ru/C as a heterogeneous catalyst, high conversions of up to 99% are obtained but the selectivity remains low with a percentage of the primary amine being at 60% at the highest. The study further reveals a high potential of homogeneous ruthenium and manganese catalysts. When also taking into account economical considerations with respect to the metal price, in particular, manganese catalysts turn out to be attractive for the desired transformation and their application in the model reaction leads to the desired primary amine product with excellent conversion, selectivity, and high yield. Practical Applications: This work describes an optimized hydrogenation process for transforming fatty nitriles to their corresponding primary amines. In general, fatty amines belong to the most applied fatty acid‐derived compounds in the chemical industry with an annual product volume exceeding 800 000 tons per year in 2011 and are widely required in the chemical industry since such compounds are either directly used in home products such as fabric softeners, dishwashing liquids, car wash detergents, or carpet cleaners or in a broad range of industrial products, for example, lubricating additives, flotation agents, dispersants, emulsifiers, corrosion inhibitors, fungicides, and bactericides, showing additional major applications, e.g., in the detergents industry. Among them primary amines play an important industrial role. However, a major concern of current processes is the lack of selectivity and the formation of secondary and tertiary amines as side‐products. By modifying a recently developed catalytic system based on manganese as economically attractive and environmentally benign metal component an efficient and selective access to fatty amines when starting from the corresponding nitriles is achieved. For example, hydrogenation of octanenitrile leads to a synthesis of octane‐1‐amine with >99% conversion and excellent selectivity with formation of secondary and tertiary amine side‐products being suppressed to an amount of <1%.  相似文献   

8.
Continuous hydrogenation of soybean oil using copper catalyst can be improved economically by reusing the catalyst. A hydrogenated oil with an approximate iodine value drop of 25 was attained by regulating the conditions and size of the reactor. Catalyst was removed by centrifuge and recycled. Reaction products were evaluated to determine catalyst activity, linolenate selectivity andtrans formation. By adding 0.2–0.4% fresh catalyst each time, the activity was retained. Linolenate selectivity ranged from 6 to 11 andtrans formation, expressed as specific isomerization, ranged from 0.63 to 0.78.  相似文献   

9.
The cyclopropene acid groups in cottonseed oil can be modified by a light hydrogenation which will not produce large amounts oftrans isomers or lower the iodine value to a significant extent. Optimum conditions, as indicated by this investigation, are 105-115C, 20 psig hydrogen pressure, 0.1% electrolytic nickel as catalyst, and a low hydrogen-dispersion rate. Under milder conditions of hydrogenation the elimination of the cyclopropenes was accompanied by a lower formation oftrans isomers and a lower hydrogenation of noncyclopropenes, but the time required increased. In one hydrogenation carried out with commercial nickel catalyst, the 0.4% of malvalic acid groups in the cottonseed oil was hydrogenated completely whereas the iodine value was reduced by only 1.7 units and only 2.1% oftrans isomers was formed. AVinterization of cottonseed oils which had been hydrogenated to the point of eliminating their response to the Halphen test and in which only small amounts of saturated acid groups andtrans isomers had been formed gave yields equal to or better than those of the original oil. Hydrogénation actually increased the ease of winterization. 2 So. Utiliz. Ees. Dev. Div, ARS, USDA.  相似文献   

10.
Continuous hydrogenation of fats and fatty acids using suspended catalysts was studied in a vertical flow reactor packed with Raschig rings. A short time of reactive contact of the fat or the fatty acid with the catalyst and hydrogen is the unique feature of this system. A nickel catalyst used in the hydrogenation of soybean oil gave a reduction of 40-50 iodine value units per min, small amounts oftrans-isorners (10-20%), large proportions of linoleate in unreduced octadecadienoyl moieties (70-80%), and nonselective reduction of polyunsaturated acyl moieties (linoleate selectivity ratio 1-3). Another nickel catalyst, used in the hydrogenation of tallow fatty acids, also gave a reduction of 40-50 iodine value units per min and nonselective reduction of polyunsaturated fatty acids. A copper chromite catalyst used in the hydrogenation of soybean oil gave a reduction of 10-15 iodine value units per min, low levels oftrans- isomers (10-15%), and selective reduction of linolenoyl moieties (linolenate selectivity ratio 4-6). Composition of positional isomers of cis- andtrans-octadecenoyl moieties in partially hydrogenated products obtained both with nickel and copper chromite catalysts reveals that essentially the same mechanisms of isomerization are involved in continuous hydrogenation at short time of reactive contact as in batch hydrogenation. 1The terms “linoloyl” and “linolenoyl” are used throughout to designate9-cis, 12-cis-octadecadienoyl and 9-cis, 12-cis, 15-cis- octadecatrienoyl groups, respectively.  相似文献   

11.
Continuous hydrogenation of sunflower seed oil has been carried out in a novel three-phase catalytic membrane hydrogenation reactor. The membrane reactor consisted of a membrane impregnated with Pd as the active catalyst, which provided a catalytic interface between the gas phase (H2) and the oil. Hydrogenations were carried out at different pressures, temperatures, and selectivities, and the formation of trans isomers was monitored during the hydrogenation runs. For the three-phase catalytic membrane reactor, interfacial transport resistances and intraparticle diffusion limitations did not influence the hydrogenation reaction. Hydrogenation runs under kinetically controlled conditions showed that oleic and elaidic acid were not hydrogenated in the presence of linoleic acid. Initial formation of stearic acid was caused by direct conversion of linoleic acid into stearic acid by a shunt reaction. Furthermore, high selectivities led to high trans levels, which is in accordance with the many published data on hydrogenation of vegetable oils in slurry reactors. Finally, the catalytic membrane showed severe catalyst deactivation. Only partial recovery of the catalyst activity was possible.  相似文献   

12.
In this study, lab‐scale hydrogenation of sunflower oil was conducted at 190 °C and 2 bar using two different catalyst types at varying concentrations and two different agitator designs (surface gassing and hollow shaft) at varying power inputs. At identical power input and reaction conditions, the reaction rate with the hollow‐shaft agitator was 1.68 times higher than with surface gassing agitation. The catalyst concentration had to exceed a certain feedstock‐dependent threshold value of 25 ppm Ni in order to start the reaction. At low catalyst concentration, the reaction rate increased proportionally with increasing catalyst concentration. When hydrogen consumption became higher than the available mass transfer provided by the agitation system, the reaction time became less dependent on the catalyst concentration. For the hollow‐shaft agitator, this situation was observed at a reaction rate of 3.7 ΔIV/min, where trans formation was at its maximum with more than 40% trans fatty acids in partially hydrogenated sunflower oil with IV 65. The region in which hydrogen mass transfer did not limit the reaction rate could be extended by more efficient agitation design or increased agitation power. In this way, productivity can be increased and trans formation can be controlled in a better way when compared to hydrogenation with a less efficient agitator.  相似文献   

13.
Under supercritical or near-critical conditions propane is a very good solvent for both lipids and hydrogen. Thus, it is possible to generate an essentially homogeneous phase, in which the transport resistances for the hydrogen are eliminated. Therefore, the hydrogen concentration at the catalyst surface can be greatly increased, resulting in extremely high reaction rates and products having low trans fatty acid contents. In this study we present results from hydrogenation of rapeseed fatty acid methyl esters under near-critical and supercritical conditions. Temperature, residence time, hydrogen pressure, and catalyst life were varied systematically, using a statistical experimental design, in order to elucidate reaction rate and trans fatty acid formation as functions of the above variables. The experiments were carried out in a microscale fixed-bed reactor, using a 3% Pd-on-aminopolysiloxane catalyst. At 92 °C, a hydrogen pressure of 4 bar, and a residence time of 40 ms we obtained a trans content of 3.8 ± 1.7% at a iodine value of 70. Our results support the findings from traditional processes that at a constant iodine value (IV) the trans content decreases with decreasing temperature, increasing pH2, and increasing residence time. The reaction rate at our best conditions was roughly 500 times higher than in traditional batch hydrogenation.  相似文献   

14.
Recent studies have shown that a 20 % trans,trans conjugated linoleic acid (CLA)‐rich soy oil significantly reduces heart disease and diabetes risk factors in obese rats. Furthermore, trans,trans‐CLA has been reported to have superior anti‐carcinogenic activity than other CLA isomers. Therefore, a more concentrated source of trans,trans‐CLA oil would be highly desirable. The objectives of this study were to (1) determine the yield of trans,trans‐CLA isomers resulting from photo‐irradiation of Tonalin® (BASF Global, Florham Park, NJ, USA) and identify trans,trans‐CLA positional isomers; and (2) derive a mathematical model of kinetics of trans,trans‐CLA TAG formation from Tonalin®. Fifty‐five percent trans,trans‐CLA rich oil was obtained in about 140 min when Tonalin® was photo‐isomerized with 0.35 % iodine, which is almost three times more than is possible with photo‐isomerized soy oil. Photo‐isomerization of Tonalin® requires about 2 h, compared to 12 h for photo‐isomerization of soy oil. This reaction is a first‐order reversible reaction with the forward rate constant (kf) = 13.17 × 10?3min?1 and backward rate constant (kb) = 5.334 × 10?3min?1. The major isomers identified were trans‐9,trans‐11‐ and trans‐10,trans‐12‐CLA.  相似文献   

15.
A new catalyst separation and recycling protocol combining magnetic nanoparticles and host‐guest assembly was developed. The catalyst, (η6‐arene)[N‐(para‐toluenesulfonyl)‐1,2‐diphenylethylenediamine]ruthenium trifluoromethanesulfonate [Ru(OTf)(TsDPEN)(η6‐arene)] bearing a dialkylammonium salt tag, was easily separated from the reaction mixtures by magnet‐assisted decantation, on basis of the formation of a pseudorotaxane complex by using dibenzo[24]crown‐8‐modified Fe3O4 nanoparticles. The ruthenium catalyst has been successfully reused at least 5 times with the retention of enantioselectivity but at the expense of relatively low catalytic activities in the asymmetric hydrogenation of 2‐methylquinoline.  相似文献   

16.
A Pt‐Ru/2 % Ce/(θ+α)‐Al2O3 nanosized catalyst was developed for selective catalytic oxidation of CH4 to synthesis gas. The process was carried out entirely with the formation of synthesis gas at high selectivity by H2 and CO with H2:CO = 2.0 ratio only at Pt:Ru = 2:1 or 1:1 atomic ratio and short contact time on Pt‐, Ru‐, and Pt‐Ru low‐percentage catalysts. Samples, which were reduced by H2 at high temperature, presented a mixture of Pt‐, Ru‐, and Pt‐Ru nanosized particles, its alloy in the mixed catalysts. The correlation between experimental results and data of physicochemical research was established. The activity together with physicochemical properties and quantum chemical calculations for the developed low‐percentage Pt‐Ru catalysts was investigated.  相似文献   

17.
Position and configuration isomers of conjugated linoleic acid (CLA), from 7, 9‐ through 12, 14‐C18:2, were synthesized by directed sequential isomerizations of a mixture of rumenic (cis‐9, trans‐11 C18:2) and trans‐10, cis‐12 C18:2 acids. Indeed, the synthesized conjugated fatty acids cover the range of unsaturated systems as found in milk fat CLA. The two‐step sequence consisted in initial sigmatropic rearrangement of cis/trans CLA isomers at 200 °C for 13 h under inert atmosphere (Helium, He), followed by selenium‐catalyzed geometrical isomerization of double bonds at 120 °C for 20 h under He. Product analysis was achieved by gas‐liquid chromatography using a 120 m polar capillary column coated with 70% cyanoalkylpolysiloxane equivalent polymer. Migration of conjugated systems was geometrically controlled as follows: the cis‐Cn, trans‐Cn+2 double bond system was rearranged through a pericyclic [1, 5] sigmatropic mechanism into a trans‐Cn‐1, cis‐Cn+1 unsaturated system, while the trans‐Cn, cis‐Cn+2 double bond system was rearranged through a similar pericyclic mechanism into a cis‐Cn+1, trans‐Cn+3 unsaturated system. Selenium‐catalyzed geometrical isomerization under mild conditions then allowed cis/trans double bond configuration transitions, resulting in the formation of all cis, all trans, cis‐trans and trans‐cis isomers. A sequential combination of the two reactions resulted in a facile controlled synthesis of CLA isomers, useful for the chromatographic identification of milk fat CLA, as well as for the preparation of CLA standard mixture.  相似文献   

18.
Effects of hydrogenation conditions (temperature, hydrogen pressure, stirring rate) on trans fatty acid formation, selectivity and melting behavior of fat were investigated. To this aim, soybean oil was hydrogenated under various conditions and fatty acid composition, trans isomer formation, slip melting point (SMP), solid fat content (SFC) and iodine number (IV) of the samples withdrawn at certain intervals of the reactions were monitored. A constant ratio (0.03%) of Nysosel 222 was used in the various combinations of temperature (150, 165 and 180 °C), stirring speed (500, 750 and 1000 rpm) and hydrogen pressure (1, 2 and 3 bar). Raising the temperature increased the formation of fatty acid isomers, whereas higher stirring rates decreased this formation, while changes in hydrogen pressure had no effect or slightly reduced it, depending on other parameters. Results also indicated that the trans fatty acid ratio increased with IV reduction, reached the highest value when the IV was about 70 and decreased at IV < 70 due to saturation. Selectivity values (S21) at that point ranged between 5.78 and 11.59. Lower temperatures and higher stirring rates decreased not only the trans isomer content but also the S21 values at significant levels. However, same effects were not observed with the changes in hydrogen pressure. It was determined that a high SMP does not necessarily mean a high SFC. Selective conditions produced samples with higher SFC but lower SMP, which is possibly because of higher trans isomer formation as well as lower saturation.  相似文献   

19.
Cationic rhodium(I) complexes of the type [NBD Rh L2]+[C1O4] (NBD = norbornadiene and L = diphenylphosphinoethane or triphenylphosphine) have been studied as catalysts for the hydrogenation of soybean oil. These catalysts give a good yield of products with cis-configuration. Indeed, hydrogenation could be performed under mild conditions (30 C, 1 atm hydrogen pressure) to an iodine value of 80 with not more than 12% oftrans monoenes and only 5% conjugated isomers formed. The results obtained are interpreted on the basis of the equilibrium H2RhL n + ⇌HRhLn+H+. By the addition of acid (HClO4 ) the bishydrido form of the catalyst could be studied. With this system only small amounts of trans monoenes were formed and no othertrans isomers could be detected. By the addition of a base such as triethylamine, the monohydridic form of the catalyst could be studied. In contrast to the bishydrido complex, this system gave large amounts oftrans monoenes, together withcis-trans andtrans-trans forms of the 18:2 acid. With both forms of the catalyst system, conjugated isomers were formed.  相似文献   

20.
Carbon xerogels are mesoporous materials obtained upon pyrolysis of the dried gels resulting from polycondensation of resorcinol and formaldehyde. Treatment with nitric acid under severe conditions introduces high amounts of oxygen containing functional groups onto the surface of the material, leading however to the collapse of its porous structure. The resulting material is then used to support 1 wt.% Pt, Ir and Ru monometallic catalysts by wet impregnation using organometallic precursors. The catalysts are characterized by N2 adsorption–desorption isotherms at 77 K, temperature programmed desorption coupled with mass spectrometry, scanning and transmission electron microscopy, and H2 chemisorption. The liquid-phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol is used in order to assess the catalytic performance of the prepared materials. Pt and Ru catalysts are initially very selective towards the hydrogenation of the olefinic double bond, while Ir is mostly selective towards the carbonyl group. After a thermal post-reduction treatment at 973 K, selectivity towards cinnamyl alcohol is significantly improved regardless of the metal nature. The Pt catalyst exhibits the best behavior, a complete shift in C=C to C=O hydrogenation being detected. The improvement in selectivity is rationalized in terms of both an increase in metal particle size and a modification in the surface chemistry of the catalyst after the post-reduction treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号