首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic vulcanization process, usually used for the preparation of thermoplastic elastomers, was used to prepare polypropylene (PP)/epoxy blends. The blends had crosslinked epoxy resin particles finely dispersed in the PP matrix, and they were called dynamically cured PP/epoxy blends. Maleic anhydride grafted polypropylene (MAH‐g‐PP) was used as a compatibilizer. The effects of the reactive compatibilization and dynamic cure were studied with rheometry, capillary rheometry, and scanning electron microscopy (SEM). The crystallization behavior and mechanical properties of PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends were also investigated. The increase in the torque at equilibrium for the PP/MAH‐g‐PP/epoxy blends indicated the reaction between maleic anhydride groups of MAH‐g‐PP and the epoxy resin. The torque at equilibrium of the dynamically cured PP/epoxy blends increased with increasing epoxy resin content. Capillary rheological measurements also showed that the addition of MAH‐g‐PP or an increasing epoxy resin content increased the viscosity of PP/epoxy blends. SEM micrographs indicated that the PP/epoxy blends compatibilized with PP/MAH‐g‐PP had finer domains and more obscure boundaries than the PP/epoxy blends. A shift of the crystallization peak to a higher temperature for all the PP/epoxy blends indicated that uncured and cured epoxy resin particles in the blends could act as effective nucleating agents. The spherulites of pure PP were larger than those of PP in the PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends, as measured by polarized optical microscopy. The dynamically cured PP/epoxy blends had better mechanical properties than the PP/epoxy and PP/MAH‐g‐PP/epoxy blends. With increasing epoxy resin content, the flexural modulus of all the blends increased significantly, and the impact strength and tensile strength increased slightly, whereas the elongation at break decreased dramatically. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1437–1448, 2004  相似文献   

2.
In the present study, an epoxy resin was dynamically cured in a polypropylene (PP)/maleic anhydride–grafted PP (MAH‐g‐PP)/talc matrix to prepare dynamically cured PP/MAH‐g‐PP/talc/epoxy composites. An increase in the torque at equilibrium showed that epoxy resin in the PP/MAH‐g‐PP/talc composites had been cured by 2‐ethylene‐4‐methane‐imidazole. Scanning electron microscopy analysis showed that MAH‐g‐PP and an epoxy resin had effectively increased the interaction adhesion between PP and the talc in the PP/talc composites. Dynamic curing of the epoxy resin further increased the interaction adhesion. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had higher crystallization peaks than did the PP/talc composites. Thermogravimetric analysis showed that the addition of MAH‐g‐PP and the epoxy resin into the PP/talc composites caused an obvious improvement in the thermal stability. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best thermal stability of all the PP/talc composites. The PP/MAH‐g‐PP/talc/epoxy composites had better mechanical properties than did the PP/MAH‐g‐PP/talc composites, and the dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best mechanical properties of all the PP/talc composites, which can be attributed to the better interaction adhesion between the PP and the talc. The suitable content of epoxy resin in the composites was about 5 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

3.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Abstract

A new method concerning the simultaneous reinforcing and toughening of polypropylene (PP) is reported. Dynamic cure of the epoxy resin with 2-ethylene-4-methane-imidazole was successfully applied in the PP/maleic anhydride grafted styrene–ethylene–butylene–styrene (MAH-g-SEBS) triblock co-polymer, and the obtained blends were named as dynamically cured PP/MAH-g-SEBS/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of the epoxy particle in the PP/MAH-g-SEBS/epoxy blends shows that MAH-g-SEBS was also used as a compatibiliser. The structure of the dynamically cured PP/MAH-g-SEBS/epoxy blends is the embedding of the epoxy particles by MAH-g-SEBS. The cured epoxy particles as organic filler increase the stiffness of the PP/MAH-g-SEBS blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing epoxy resin content, and the impact strength reaches a maximum of 342 J m?1 at the epoxy resin content of 10wt-%. Differential scanning calorimetry analysis shows that the epoxy particles in the dynamically cured PP/MAH-g-SEBS/epoxy blends could have contained embedded MAH-g-SEBS, decreasing the nucleating effect of the epoxy resin. Wide angle X-ray diffraction analysis shows that the dynamical cure and compatibilisation do not disturb the crystalline structure of PP in the blends.  相似文献   

5.
In this article, the dynamic vulcanization process was applied to polypropylene (PP)/Novolac blends compatibilized with maleic anhydride‐grafted PP (MAH‐g‐PP). The influences of dynamic cure, content of MAH‐g‐PP, Novolac, and curing agent on mechanical properties of the PP/Novolac blends were investigated. The results showed that the dynamically cured PP/MAH‐g‐PP/Novolac blend had the best mechanical properties among all PP/Novolac blends. The dynamic cure of Novolac improved the modulus and stiffness of the PP/Novolac blends. The addition of MAH‐g‐PP into dynamically cured PP/Novolac blend further enhanced the mechanical properties. With increasing Novolac content, tensile strength, flexural modulus, and flexural strength increased significantly, while the elongation at break dramatically deceased. Those blends with hexamethylenetetramine (HMTA) as a curing agent had good mechanical properties at HMTA content of 10 wt %. Scanning electron microscopy (SEM) analysis showed that dynamically cured PP/MAH‐g‐PP/Novolac blends had finer domains than the PP/MAH‐g‐PP/Novolac blends. Thermogravimetric analysis (TGA) results indicated that the incorporation of Novolac into PP could improve the thermal stability of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

6.
A novel processing method of combining dynamic vulcanization with the silane‐grafted water‐crosslinking technique to improve the comprehensive properties of polyethylene (PE) is reported. PE was grafted with vinyl triethoxysilane (VTEO) first, and then, N,N,N,N′‐ tetragylcidyl‐4,4′‐diaminodiphenylmethane epoxy resin was dynamically cured in a PE‐g‐VTEO matrix through a twin‐screw extruder to prepare PE‐g‐VTEO/epoxy blends. Polyethylene‐graft‐maleic anhydride (PE‐g‐MAH) was used as a compatibilizer to improve the interaction between PE‐g‐VTEO and the epoxy resin. The results show that the novel processing method improved the strength, stiffness, and toughness of the blends, especially the heat resistance of the blends, by the addition of the dynamically cured epoxy resin as the reinforcement. PE‐g‐MAH increased the compatibility between PE‐g‐VTEO and the epoxy resin, which played an important role in the improvement of the comprehensive properties of the blends. In addition, after treatments in both hot air and hot water, the comprehensive properties of blends were further improved, thanks to the further curing reaction of epoxy with PE‐g‐VTEO. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The crystallization behavior of polypropylene (PP)/carbon black (CB) and PP/epoxy/CB composites was studied with differential scanning calorimetry (DSC). The effects of compatibilizer MAH‐g‐PP and dynamic cure on the crystallization behavior are investigated. The nonisothermal crystallization parameters analysis showed that CB particles in the PP/CB composites and the dispersed epoxy particles in the PP/epoxy composites could act as nucleating agents, accelerating the crystallization of the composites. Morphological studies indicated that the incorporation of CB into PP/epoxy resulted in its preferential localization in the epoxy resin phase, changing the spherical epoxy particles into elongated structure, and thus reduced the nucleation effect of epoxy particles. Addition of MAH‐g‐PP significantly decreased the average diameter of epoxy particles in the PP/epoxy and PP/epoxy/CB composites, promoting the crystallization of PP more effectively. The isothermal crystallization kinetics and thermodynamics of the PP/CB and PP/epoxy/CB composites were studied with the Avrami equation and Hoffman theory, respectively. The Avrami exponent and the crystallization rate of the PP/CB composites were higher than those of PP, and the free energy of chain folding for PP crystallization decreased with increasing CB content. Addition of MAH‐g‐PP into the PP/epoxy and PP/epoxy/CB composites increased the crystallization rate of the composites and decreased the chain folding energy significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 104–118, 2006  相似文献   

8.
In this article, maleated–grafted ethylene‐co‐vinyl acetate (EVA‐g‐MA) was used as the interfacial modifier for polypropylene/polyamide‐6 (PP/PA6) blends, and effects of its concentration on the mechanical properties and the morphology of blends were investigated. It was found that the addition of EVA‐g‐MA improved the compatibility between PP and PA6 and resulted in a finer dispersion of dispersed PA6 phase. In comparison with uncompatibilized PP/PA6 blend, a significant reduction in the size of dispersed PA6 domain was observed. Toluene‐etched micrographs confirmed the formation of interfacial copolymers. Mechanical measurement revealed that the addition of EVA‐g‐MA markedly improved the impact toughness of PP/PA6 blend. Fractograph micrographs revealed that matrix shear yielding began to occur when EVA‐g‐MA concentration was increased upto 18 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3300–3307, 2006  相似文献   

9.
Polypropylene (PP)/nylon 11/maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MAH) ternary polymer blends were prepared via melt blending in a corotating twin‐screw extruder. The effect of nylon 11 and EPDM‐g‐MAH on the phase morphology and mechanical properties was investigated. Scanning electron microscopy observation revealed that there was apparent phase separation for PP/EPDM‐g‐MAH binary blends at the level of 10 wt % maleated elastomer. For the PP/nylon 11/EPDM‐g‐MAH ternary blends, the dispersed phase morphology of the maleated elastomer was hardly affected by the addition of nylon 11, whereas the reduced dispersed phase domains of nylon 11 were observed with the increasing maleated elastomer loading. Furthermore, a core‐shell structure, in which nylon 11 as a rigid core was surrounded by a soft EPDM‐g‐MAH shell, was formed in the case of 10 wt % nylon 11 and higher EPDM‐g‐MAH concentration. In general, the results of mechanical property measurement showed that the ternary blends exhibited inferior tensile strength in comparison with the PP matrix, but superior toughness. Especially low‐temperature impact strength was obtained. The toughening mechanism was discussed with reference to the phase morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The comparison of the mechanical properties between poly(propylene)/ethylene‐propylene‐diene monomer elastomer (PP/EPDM) and poly(propylene)/maleic anhydride‐g‐ethylene‐propylene‐diene monomer [PP/MEPDM (MAH‐g‐EPDM)] showed that the latter blend has noticeably higher Izod impact strength but lower Young's modulus than the former one. Phase morphology of the two blends was examined by dynamic mechanical thermal analysis, indicating that the miscibility of PP/MEPDM was inferior to PP/EPDM. The poor miscibility of PP/MEPDM degrades the nucleation effectiveness of the elastomer on PP. The observations of the impact fracture mode of the two blends and the dispersion state of the elastomers, determined by scanning electron microscopy, showed that PP/EPDM fractured in a brittle mode, whereas PP/MEPDM in a ductile one, and that a finer dispersion of MEPDM was found in the blend PP/MEPDM. These observations indicate that the difference in the dispersion state of elastomer between PP/EPDM and PP/MEPDM results in different fracture modes, and thereby affects the toughness of the two blends. The finer dispersion of MEPDM in the blend of PP/MEPDM was attributed to the part cross‐linking of MEPDM resulting from the grafting reaction of EPDM with maleic anhydride (MAH) in the presence of dicumyl peroxide (DCP). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2486–2491, 2002  相似文献   

11.
In this work, maleic anhydride‐grafted polypropylene (PP‐g‐MAH) and maleic anhydride‐grafted poly(acrylonitrile‐butadiene‐styrene) (ABS‐g‐MAH) at 2 : 1 mass ratio were added as a compatibilizer in the PP/ABS blends. The compatibilizing effect was evaluated by adding the graft copolymers together with epoxy resin/imidazole curing agent (E51/2E4MZ). The reaction in reactive extrusion, morphological structure, and properties of PP and ABS blends were investigated by using infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X‐ray spectrum, transmission electron microscope (TEM), dynamic thermomechanical analysis (DMA), differential scanning calorimetry (DSC), and mechanical properties tests. The results showed that the compatibilizing effect was greatly improved because of the addition of the graft copolymers together with epoxy resin/imidazole curing agent (E51/2E4MZ) because the link structure of PP‐g‐MAH and ABS‐g‐MAH was formed by the reaction of anhydride group with epoxy group catalyzed by the imidazole. The size of the dispersed phase decreased dramatically, the interfacial adhesion between ABS particles and PP matrix was improved, and the tensile strength and flexural modulus of the PP/ABS blends increased further. The optimizing properties were obtained at 3 phr E51/2E4MZ. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40898.  相似文献   

12.
Nylon 1010 blends with ethylene–vinyl acetate copolymer (EVA) and maleated ethylene–vinyl acetate (EVA‐g‐MAH) were prepared through melt blending. The vinyl acetate (VA) content and viscosity of EVA significantly affected the notched impact strength of nylon/EVA/EVA‐g‐MAH (80/15/5) blends. The nylon/EVA/EVA‐g‐MAH blends with high notched impact strength (over 60 kJ/m2) were obtained when the VA content in EVA ranged from 28 to 60 wt%. The effect of VA content on the notched impact strength of blends was related to the glass transition temperature for EVA with high VA content and crystallinity for EVA with low VA content. For nylon blends with EVA with the same VA content, low viscosity of EVA led to high notched impact strength. Fracture morphology of nylon/EVA/EVA‐g‐MAH (80/15/5) blends showed that blends with ductile fracture behavior usually had large matrix plastic deformation, which was the main energy dissipation mechanism. A relationship between the notched impact strength and the morphology of nylon/EVA/EVA‐g‐MAH (80/15/5) blends was well correlated by the interparticle distance model. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

13.
Mechanical properties and morphological studies of compatibilized blends of polyamide‐6 (PA‐6)/K resin grafted with maleic anhydride (K‐g‐MAH) and PA‐6/K resin/K‐g‐MAH were investigated as functions of K resin/K‐g‐MAH and dispersed phase K resin concentrations, and all the blends were prepared using twin screw extruder followed by injection molding. Scanning electron microscopy (SEM) were used to assess the fracture surface morphology and the dispersion of the K resin in PA‐6 continuous phase, the results showing extensive deformation in presence of K‐g‐MAH, whereas, uncompatibilized PA‐6/K resin blends show dislodging of K resin domains from the PA‐6 matrix. Dynamic mechanical thermal analysis (DMTA) test reveals the partially miscibility of PA‐6 with K‐g‐MAH, and differential scanning calorimetry (DSC) results further identified that the introduction of K‐g‐MAH greatly improved the miscibility between PA‐6 and K resin. The mechanical properties of PA‐6/K resin blends and K‐g‐MAH were studied through bending, tensile, and impact properties. The Izod notch impact strength of PA‐6/K‐g‐MAH blends increase with the addition of K‐g‐MAH, when the K‐g‐MAH content adds up to 20 wt %, the impact strength is as more than 6.2 times as pure PA‐6, and accompanied with small decrease in the tensile and bending strength less than 12.9% and 17.5%, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

15.
The polypropylene‐graft‐cardanol (PP‐g‐cardanol) was prepared by reactive extrusion with polypropylene (PP) and natural renewable cardanol which could increase the interfacial energy of PP and inhibit the degradation of PP during the process of reactive extrusion and usage. In this article, PP‐g‐cardanol and polypropylene‐graft‐maleic anhydride (PP‐g‐MAH) were used as compatibilizers of the polypropylene (PP)/poly(acrylonitrile‐butadiene‐styrene) (ABS) blends. PP/ABS (70/30, wt %) blends with PP‐g‐cardanol and PP‐g‐MAH were prepared by a corotating twin‐screw extruder. From the results of morphological studies, the droplet size of ABS was minimized to 1.93 and 2.01 μm when the content of PP‐g‐cardanol and PP‐g‐MAH up to 5 and 7 phr, respectively. The results of mechanical testing showed that the tensile strength, impact strength and flexural strength of PP/ABS (70/30) blends increase with the increasing of PP‐g‐cardanol content up to 5 phr. The complex viscosity of PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol showed the highest value. Moreover, the change of impact strength and tensile strength of PP/ABS (70/30) blends were investigated by accelerated degradation testing. After 4 accelerated degradation cycles, the impact strength of the PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol decrease less than 6%, but PP/ABS (70/30) blends with 5 phr PP‐g‐MAH and without compatibilizer decrease as much as 12% and 32%, respectively. The tensile strength of PP/ABS (70/30) blends has a similar tendency to that of impact strength. The above results indicated that PP‐g‐cardanol could be used as an impact modifier and a good compatibilizer, which also exhibited better stability performance during accelerated degradation testing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41315.  相似文献   

16.
In this work, five ternary blends based on 70% by weight (wt %) of polypropylene (PP) with 30% wt of polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene)(SEBS) dispersed phase consists of 15 wt % PC and 15 wt % reactive (maleic anhydride grafted) and nonreactive SEBS mixtures at various ratios were prepared in a co‐rotating twin screw extruder. scanning electron microscopy (SEM) micrographs showed that the blends containing only nonreactive SEBS exhibited a fine dispersion of core‐shell particles. With decreasing the SEBS/SEBS‐g‐Maleic Anhydride (MAH) weight ratio, the morphology changed from the core‐shell particles to a mixed of core‐shell, rod‐like and individual particles. This variation in phase morphology affected the thermal and mechanical properties of the blends. DSC results showed that the blends containing only nonreactive SEBS exhibited a minimum in degree of crystallinity due to the homogeneous nucleation of core‐shell particles. Mechanical testing showed that in the SEBS/SEBS‐g‐MAH weight ratio of 50/50, the modulus and impact strength increased compared with the PP matrix while the yield stress had minimum difference with that of PP matrix. These effects could be attributed to the formation of those especial microstructures revealed by the SEM studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
A liquid diglycidyl ether of bisphenol A (DGEBA) epoxy resin is blended in various proportions with amine‐terminated polyoxypropylene (POPTA) and cured using an aliphatic diamine hardener. The degree of crosslinking is varied by altering the ratio of diamine to epoxy molecules in the blend. The mixture undergoes almost complete phase separation during cure, forming spherical elastomer particles at POPTA concentrations up to 20 wt %, and a more co‐continuous morphology at 25 wt %. In particulate blends, the highest toughness is achieved with nonstoichiometric amine‐to‐epoxy ratios, which produce low degrees of crosslinking in the resin phase. In these blends, the correlation between GIC and plateau modulus (above the resin Tg), over a wide range of amine‐to‐epoxy ratios, confirms the importance of resin ductility in determining the fracture resistance of rubber‐modified thermosets. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 427–434, 1999  相似文献   

18.
Ethene/propene terpolymers containing either 1‐vinylcylohexene‐4 (VCHen) or vinylcyclohexane (VCHan) as termonomer component were prepared using MAO‐activated rac‐Me2Si(2‐MeBenz[e]Ind)2ZrCl2 (MBI). Propene content was varied between 26 and 72 wt.‐% with less than 1 mol‐% termonomer incorporation. Blends containing 85 vol.‐% isotactic polypropene (i‐PP) and 15 vol.‐% of the two EP terpolymer families were prepared by melt‐compounding in a twin‐screw kneader at 200°C to examine the role of sulfur‐mediated crosslinking of the unsaturated EPDM terpolymer phase in comparison to the corresponding blends containing non‐crosslinked saturated EP/VCHan terpolymers. The observed glass temperature (Tg) depression of the Tg of EP(D)M phases with respect to the Tg of the corresponding bulk EP(D)M was attributed to the presence of thermally induced stresses in both blend systems. Blends of i‐PP with crosslinked EPDM showed smaller Tg depression with respect to those of iPP/EPM blends containing non‐crosslinked EP and EPM dispersed phases. Morphology differences were detected for i‐PP/EPM and dynamically vulcanized i‐PP/EPDM blends by means of atomic force microscopy (AFM). The crosslinked i‐PP/EPDM blends exhibited significantly improved low temperature toughness as compared to the corresponding non‐crosslinked i‐PP/EPM blends. Curing of the EPDM elastomer phase in i‐PP/EPDM (85 vol.‐%/15 vol.‐%) blends afforded significantly improved toughness/stiffness balance and a wider toughness window with respect to the corresponding i‐PP/EPM and i‐PP/EP blends without sulfur‐cured rubber phases.  相似文献   

19.
To improve the mechanical properties of blends of polypropylene (PP) and terpolymer of ethylene–propylene–diene (EPDM), a triblock copolymer, (PP‐g‐MAH)‐co‐[PA‐6,6]‐co‐(EPDM‐g‐MAH), was synthesized by coupling reaction of maleic anhydride (MAH)‐grafted PP (PP‐g‐MAH), EPDM‐g‐MAH, and PA‐6,6. The newly prepared block copolymer brought about a physical interlocking between the blend components, and imparted a compatibilizing effect to the blends. Introducing the block copolymer to the blends up to 5 wt % lead to formation of a β‐form crystal. The wide‐angle X‐ray diffractograms measured in the region of 2θ between 10° and 50° ascertained that incorporating the block copolymer gave a new peak at 2θ = 15.8°. The new peak was assigned to the (300) plane spacings of the β‐hexagonal crystal structure. In addition, the block copolymer notably improved the low‐temperature impact property of the PP/EPDM blends. The optimum usage level of the compatibilizer proved to be 0.5 wt %. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1267–1274, 2000  相似文献   

20.
In this work, blends of poly(butylene terephthalate) (PBT) and linear low‐density polyethylene (LLDPE) were prepared. LLDPE was used as an impact modifier. Since the system was found to be incompatible, compatibilization was sought for by the addition of the following two types of functionalized polyethylene: ethylene vinylacetate copolymer (EVA) and maleic anhydride‐grafted EVA copolymer (EVA‐g‐MAH). The effects of the compatibilizers on the rheological and mechanical properties of the blends have been also quantitatively investigated. The impact strength of the PBT–LLDPE binary blends slightly increased at a lower concentration of LLDPE but increased remarkably above a concentration of 60 wt % of LLDPE. The morphology of the blends showed that the LLDPE particles had dispersed in the PBT matrix below 40 wt % of LLDPE, while, at 60 wt % of LLDPE, a co‐continuous morphology was obtained, which could explain the increase of the impact strength of the blend. Generally, the mechanical strength was decreased by adding LLDPE to PBT. Addition of EVA or EVA‐g‐MAH as a compatibilizer to PBT–LLDPE (70/30) blend considerably improved the impact strength of the blend without significantly sacrificing the tensile and the flexural strength. More improvement in those mechanical properties was observed in the case of the EVA‐g‐MAH system than for the EVA system. A larger viscosity increase was also observed in the case of the EVA‐g‐MAH than EVA. This may be due to interaction of the EVA‐g‐MAH with PBT. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 989–997, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号