首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of thermal diffusion and magnetic field effects on combined free‐forced convection and mass transfer flow past a vertical porous flat plate, in the presence of heat generation is studied numerically. The governing momentum, energy and concentration equations are converted into a system of nonlinear ordinary differential equations by means of similarity transformations. The resulting system of coupled nonlinear ordinary differential equations is solved numerically by using the Shooting method. Numerical results are presented for velocity, temperature and concentration profiles within the boundary layer for different parameters of the problem including suction parameter, heat generation parameter, Soret number, Dufour number, magnetic parameter, etc. In addition, the effects of the pertinent parameters on the skin friction and the rates of heat and mass transfer are discussed numerically and illustrated graphically.  相似文献   

2.
The steady, gravity-driven, incompressible, hydromagnetic, laminar flow of a viscous, electrically conducting, micropolar liquid along an inclined plane subjected to a uniform transverse magnetic field is examined, neglecting surface tension effects. The governing two-dimensional boundary layer equations in an (x, y) coordinate in the absence of pressure gradient are reduced to a pair of ordinary differential equations for linear momentum and angular momentum conservation subject to generalized micro-rotation and velocity boundary conditions at the plane surface. The film thickness is assumed uniform along the plane. The reduced conservation equations are then nondimensionalized and solved numerically with the network simulation method (NSM) and Sparrow-Quack-Boerner local non-similarity method (LNM) for a wide range of the governing dimensionless fluid dynamics parameters. Excellent agreement is obtained between the NSM and LNM solutions. The computations indicate that increasing micropolarity, i.e., Eringen number, elevates micro-rotation magnitudes but reduces linear velocity, i.e., decelerates the flow. The study has significant applications in magnetic field control of materials processing systems.  相似文献   

3.
This article investigates the influence of radiation and temperature‐dependent viscosity on the problem of unsteady MHD flow and heat transfer of an electrically conducting fluid past an infinite vertical porous plate taking into account the effect of viscous dissipation. The governing equations are converted into a system of nonlinear ordinary differential equations via a local similarity parameter which is taken as a function of time. The resulting system of coupled nonlinear ordinary differential equations is solved numerically using the fourth order Runge–Kutta integration scheme with the shooting method. The numerical results for the velocity and the temperature are displayed graphically showing the effects of various parameters. The results show that increasing the Eckert number and decreasing the viscosity of air leads to a rise in the velocity, while increasing in the magnetic or the radiation parameters is associated with a decrease in the velocity. Also, an increase in the Eckert number leads to an increase in the temperature, whereas an increase in radiation parameter leads to a decrease in the temperature.  相似文献   

4.
An analysis has been carried out to study magnetohydrodynamic boundary layer flow and heat transfer of an electrically conducting micropolar fluid over a nonlinear stretching surface with variable wall heat flux in the presence of heat generation/absorption and a non‐uniform transverse magnetic field. The governing system of partial differential equations is first transformed into a system of ordinary differential equations using similarity transformation. The transformed equations are solved numerically. Results for the dimensionless velocity, micro‐rotation, and temperature profiles are displayed graphically delineating the effects of various parameters characterising the flow. The results show that the velocity profile decreases as the magnetic parameter and the velocity exponent increase, while it increases as the material parameter increases. The results show also that the temperature profile increases as the magnetic parameter, the velocity exponent, and the heat generation parameter increase. Furthermore, the temperature profile decreases as the material parameter, the heat absorption parameter, and the Prandtl number increase.  相似文献   

5.
The present investigation is concerned with the effect of Hall currents on boundary layer flow, and heat and mass transfer of an electrically conducting fluid over an unsteady stretching sheet in the presence of a strong magnetic field. The electron-atom collision frequency is assumed to be relatively high, so that the Hall effect is assumed to exist, while the induced magnetic field is neglected. The governing time-dependent boundary layer equations for momentum, thermal energy, and concentration are reduced using a similarity transformation to a set of coupled ordinary differential equations. The similarity ordinary differential equations are then solved numerically by the successive linearization method together with the Chebyshev pseudo-spectral collocation method. Effects of the Prandtl number, Pr, Schmidt number, Sc, magnetic field, M, Hall parameter, m, and the unsteadiness parameter, A, on the velocity, temperature, and concentration profiles as well as the local skin friction coefficient and the heat and mass transfer rates are depicted graphically and/or in tabular form. Favorable comparisons with previously published work on various special cases of the problem are also obtained.  相似文献   

6.
This study deals with the stagnation point flow of ferrofluid over a flat plate with non-linear slip boundary condition in the presence of homogeneous-heterogeneous reactions.Three kinds of ferroparticles,namely,magnetite(Fe_3O_4),cobalt ferrite(CoFe_2O_4) and manganese zinc ferrite(Mn-ZnFe_2O_4) are taken into account with water and kerosene as conventional base fluids.The developed model of homogeneous-heterogeneous reactions in boundary layer flow with equal and unequal diffusivities for reactant and autocatalysis is considered.The governing partial differential equations are converted into system of non-linear ordinary differential equations by mean of similarity transformations.These ordinary differential equations are integrated numerically using shooting method.The effects of pertinent parameters on velocity and concentration profiles are presented graphically and discussed.We found that in the presence of Fe_3O_4-kerosene and CoFe_2O_4-kerosene,velocity profiles increase for large values of α and β whereas there is a decrement in concentration profiles with increasing values of if and K_s.Furthermore,the comparison between non-magnetic(A1_2O_3) and magnetic Fe_3O_4 nanoparticles is given in tabular form.  相似文献   

7.
In this article,we have considered the simultaneous influence of ohmic heating and chemical reaction on heat and mass transfer over a stretching sheet.The effects of applied magnetic field are also taken into consideration while the induced magnetic field is not considered due to very small magnetics Reynolds number.The governing flow problem comprises of momentum,continuity,thermal energy and concentration equation which are transformed into highly nonlinear coupled ordinary differential equations by means of similarity transforms,which are then,solved numerically with the help of Successive Linearization method (SLM) and Chebyshev Spectral collocation method.Numerical values of skin friction coefficient,local Nusselt number,and Sherwood number are also taken into account with the help of tables.The physical influence of the involved parameters of flow velocity,temperature and concentration distribution is discussed and demonstrated graphically.The numerical comparison is also presented with the existing published results and found that the present results are in excellent agreement which also confirms the validity of the present methodology.  相似文献   

8.
A numerical analysis has been carried out to study magnetohydrodynamic boundary layer flow, heat and mass transfer characteristics on steady two‐dimensional flow of an electrically conducting fluid over a stretching sheet embedded in a non‐Darcy porous medium in the presence of thermal radiation and viscous dissipation. The governing partial differential equations are convected into a system of nonlinear ordinary differential equations by similarity transformation and are solved numerically by using the Successive linearisation method, together with the Chebyshev pseudo‐spectral collocation method. The effects of various parameters on the velocity, temperature, and concentration fields as well as on the skin‐friction coefficient are presented graphically and in tabular forms.  相似文献   

9.
Analytical study for the problem of flow and heat transfer of electrically conducting viscoelastic fluid over a continuously moving permeable stretching surface with nonuniform heat source/sink in a fluid-saturated porous medium has been undertaken. The momentum and thermal boundary layer equations, which are partial differential equations, are converted into ordinary differential equations, by using suitable similarity transformation. The resulting nonlinear ordinary differential equations of momentum are solved analytically assuming exponential solution, and similarly thermal boundary layer equations are solved exactly by using power series method, with the solution obtained in terms of Kummer's function. The results are shown with graphs and tables. The effect of various physical parameters like viscoelastic parameter, porosity parameter, Eckert number, space, and temperature-dependent heat source/sink parameters enhances the temperature profile, whereas increasing the values of the suction parameter and Prandtl number decreases the temperature profile. The results have technological applications in liquid-based system involving stretchable materials.  相似文献   

10.
The effect of temperature-dependent viscosity on free convective flow past a vertical porous plate is studied in the presence of a magnetic field, thermal radiation, and a first-order homogeneous chemical reaction. Boundary layer equations are derived and the resulting approximate nonlinear ordinary differential equations are solved numerically by the shooting method. A parametric study of all parameters involved is conducted, and a representative set of numerical results for the velocity and temperature profiles as well as the skin-friction parameter and the Nusselt and Sherwood numbers is illustrated graphically to show typical trends of the solutions. The dynamic viscosity in this study is taken as a function of the temperature although the Prandtl number is considered constant.  相似文献   

11.
The influence of heat generation or absorption on the steady, two-dimensional flow of an electrically conducting fluid near a stagnation point on a stretching permeable surface with variable surface heat flux in the presence of a magnetic field is investigated. The governing system of partial differential equations describing the problem are converted into highly non-linear ordinary differential equations using similarity transformation. Numerical solutions of these equations are obtained using the fourth-order Runge-Kutta integration scheme with the shooting method. The effects of the heat generation or absorption parameter and the velocity ratio parameter on the velocity and the temperature are displayed graphically and discussed. The numerical values of the local skin-friction coefficient and the local Nusselt number for various values of physical parameters are presented through tables and discussed.  相似文献   

12.
A one‐dimensional steady‐state two‐fluid model has been developed to demonstrate the drying kinetics in the vertical up‐flow gas‐solid system. The model takes into account mass, momentum, and heat transfer between the continuous and dispersed phases. A set of non‐linear differential equations have been solved numerically for the velocity, moisture content, and temperature of both the continuous and dispersed phases along the dryer length. The effect of operating parameters on drying kinetics has been critically examined and the model simulations are compared with the data reported in the literature.  相似文献   

13.
The problem of a steady mixed convection stagnation point flow towards a permeable vertical plate with prescribed surface heat flux immersed in an incompressible micropolar fluid is studied numerically. The governing partial differential equations are first transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by a finite-difference scheme known as the Keller-box method and the Runge–Kutta–Fehlberg method with shooting technique. The effects of the material parameter, buoyancy parameter, suction/injection parameter and the Prandtl number on the fluid flow and heat transfer characteristics are discussed. It is found that dual solutions exist for both assisting and opposing flows. The skin friction coefficient and the local Nusselt number increase in the presence of suction and magnetic field. Moreover, suction as well as fluids with larger Prandtl number widens the range of the buoyancy parameter for which the solution exists.  相似文献   

14.
An analysis is performed to investigate the effects of variable viscosity and thermal conductivity on the two-dimensional steady flow of an electrically conducting, incompressible, upper-convected Maxwell fluid in the presence of a transverse magnetic field and heat generation or absorption. The governing system of partial differential equations is transformed into a system of coupled nonlinear ordinary differential equations, and is solved numerically. Velocity and temperature fields have been computed and shown graphically for various values of the physical parameters. The local skin-friction coefficient and the local Nusselt number have been tabulated. It is found that fluid velocity decreases with an increase in the viscosity parameter and the Deborah number. It is also observed that increasing the magnetic parameter leads to a fall in the velocity and a rise in the temperature. Furthermore, it is shown that the temperature increases due to increasing the values of the thermal conductivity parameter and the heat generation parameter, while it decreases with an increase of both the absolute value of the heat absorption parameter and the Prandtl number.  相似文献   

15.
The effect of thermal radiation absorption on an unsteady free convective flow past a vertical plate is studied in the presence of a magnetic field and constant wall heat flux. Boundary layer equations are derived, and the resulting approximate nonlinear ordinary differential equations are solved analytically using asymptotic technique. A parametric study of all parameters involved is conducted, and a representative set of numerical results for the velocity and temperature profiles as well as the skin-friction parameter are illustrated graphically to show typical trends of the solutions.  相似文献   

16.
The present work is concerned with the effects of surface slip conditions and thermal radiation on an electrically conducting fluid over a non-isothermal stretching surface in the presence of a uniform transverse magnetic field. Similarity transformation is used to transform the partial differential equations describing the problem into a system of nonlinear ordinary differential equations, which is solved analytically. The effects of various parameters on the velocity and temperature profiles as well as on the local skin-friction and the local Nusselt number are discussed in detail and displayed through graphs.  相似文献   

17.
A mathematical model is developed to describe the separation of suspensions with a non-Newtonian dispersion medium in a cylindroconical hydrocyclone with allowance for the effect of the Coriolis force on solid-phase particles. The set of partial differential equations describing the separation is reduced to a set of ordinary differential equations, which is solved numerically. The effect of the determining similarity parameters and the rheological properties of the dispersion medium on the concentration distribution is described.  相似文献   

18.
A model for the growth of an ideal and a non‐ideal spherical gas bubble in a quiescent viscous liquid is presented. The growth of the bubble is assumed to be controlled by both mass transfer and viscous forces. Using the integral method, the differential momentum and binary mass balances were transformed into ordinary differential equations, which were numerically solved. Some analytical solutions for simple cases are also presented. The relevance of this work to the process of polymer melt devolatilization is discussed.  相似文献   

19.
The entrance region flow of a Casson fluid in a straight channel has been investigated numerically without making prior assumptions on the form of velocity profile within the boundary layer region, which is determined by a cross-sectional integration of the momentum differential equation for a given distance from the channel entrance. Using the macroscopic mass and momentum balance equations, the thickness of the core, the entrance length, the plug core velocity, and the pressure drop have been obtained at each cross section of the entrance region of the channel for specific values of Casson number.  相似文献   

20.
In this study, unsteady MHD boundary layer flow with diffusion of chemically reactive species undergoing first-order chemical reaction over a permeable stretching sheet with suction or blowing and also with power-law variation in wall concentration is investigated. Using similarity transformation, the governing partial differential equations are converted into nonlinear self-similar ordinary differential equations. The transformed equations are then solved by the finite difference method using the quasi-linearization technique. Due to the increase in the unsteadiness parameter, the velocity initially decreases, but after a certain point it increases. A similar effect is also observed in case of concentration distribution. The increase in magnetic parameter causes a decrease in velocity and an increase in concentration. For increasing strength of applied suction both momentum and concentration boundary layer thicknesses decrease. On the other hand, applied blowing has reverse effects. Moreover, the mass transfer from the sheet is enhanced with increasing values of Schmidt number, reaction rate parameter, and also power-law exponent (related to wall concentration distribution). For high negative values of the power-law exponent, mass absorption at the sheet occurs. Moreover, due to increase of unsteadiness, this mass absorption is prevented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号