首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
L ‐α‐Aminoadipic acid reductases catalyze the ATP‐ and NADPH‐dependent reduction of L ‐α‐aminoadipic acid to the corresponding 6‐semialdehyde during fungal L ‐lysine biosynthesis. These reductases resemble peptide synthetases with regard to their multidomain composition but feature a unique domain of elusive function—now referred to as an adenylation activating (ADA) domain—that extends the reductase N‐terminally. Truncated enzymes based on NPS3, the L ‐α‐aminoadipic acid reductase of the basidiomycete Ceriporiopsis subvermispora, lacking the ADA domain either partially or entirely were tested for activity in vitro, together with an ADA‐adenylation didomain and the ADA domainless adenylation domain. We provide evidence that the ADA domain is required for substrate adenylation: that is, the initial step of the catalytic turnover. Our biochemical data are supported by in silico modeling that identified the ADA domain as a partial peptide synthetase condensation domain.  相似文献   

2.
The nonribosomal peptide synthetase PF1022‐synthetase (PFSYN) synthesises the cyclooctadepsipeptide PF1022 from the building blocks D ‐lactate, D ‐phenyllactate and N‐methylleucine. The substrate tolerance of PFSYN for hydroxy acids was probed by in vitro screening of a set of aliphatic and aromatic α‐D ‐hydroxy acids with various structural modifications in the side chain. Thus, new PF1022 derivatives for example, propargyl‐D ‐lactyl‐PF1022 and β‐thienyl‐D ‐lactyl‐PF1022 were generated. The promiscuous behaviour of PFSYN towards aliphatic and aromatic α‐D ‐hydroxy acids is considerably larger than that of related enniatin synthetase (ESYN) and thus gives rise to the enzymatic generation of various new PF1022 derivatives.  相似文献   

3.
Addition of lithiated methoxyallene 5 to literature‐known amino aldehyde 3 followed by ozonolysis provided syn‐configurated α‐hydroxy‐β‐amino ester 6 in moderate overall yield and with an ee of 90%. The predominant formation of syn‐compounds may be due to a chelate controlled addition step.  相似文献   

4.
The reaction of α,β‐unsaturated imines, derived from steroidal amines and cinnamaldehyde, with carbon monoxide and ethylene leads to the formation of steroids with a 1,3‐dihydropyrrol‐2‐one ring system attached to the D‐ring of the steroid. In addition, a new stereogenic center at C‐3 of the pyrrolone ring is produced during the reaction sequence. In the case of a 16‐position of the imine moiety the yields are nearly quantitative but the diastereoselectivity is low whereas the sterically more hindered 17‐position shows a decreased reactivity but quite good diastereoselectivities. Complete diastereoselectivity is achieved if the starting compound exhibits an additional silyl ether group in the 17β‐position besides the imine subunit in the 16β‐position. The compound bearing the pyrrolone substituent at 17β‐position was characterized by means of X‐ray crystallography showing that the rotation of the pyrrolone ring is hindered by a strong intramolecular hydrogen bond between the carbonyl oxygen of the pyrrolone moiety and the hydrogen at C‐17. The question of whether this intramolecular hydrogen bond is also responsible for the observed diastereoselectivities is discussed.  相似文献   

5.
Thymosin β4Xen, a 43 residue peptide recently isolated from Xenopus laevis, was synthesized by automatic solid phase procedure and compared with the natural product, isolated from the ovaries of Xenopus laevis For the synthesis N-methylpyrrolidone was chosen as solvent instead of the commonly used dimethylformamide because this solvent seems to be superior for solid phase peptide synthesis due to the favorable swelling properties of the polystyrene resin in this solvent and its dissolving power against the resin-bound peptide which reduces intermolecular aggregation. With acetic anhydride/pyridine and hydroxysuccinimide acetate two different acetylation reagents were tested for the final acetylation step, which gave both comparable results as shown by analytical HPLC investigations. The crude synthetic product was purified by HPLC, confirmed by ASA and LD-MS and was identical compared with the natural thymosin β4Xen  相似文献   

6.
The Lewis base‐organocatalyzed asymmetric hydrosilylation of α‐acetamido‐β‐enamino esters was investigated. Among various chiral Lewis base catalysts, a novel catalyst derived from L ‐serine was found to be the most efficient one which can promote the reaction to afford a series of α,β‐diamino acid derivatives with high yields (up to 99%), excellent enantioselectivities (up to 98% ee) and moderate diastereoselectivities (up to 80:20 dr). The absolute configuration of one of the products was determined by the X‐ray crystallographic analysis. In addition, the mechanism and the transition state of the reaction were proposed.  相似文献   

7.
8.
A new strategy was developed for the synthesis of a valuable class of α‐aminomethylacrylates via the Baylis–Hillman reaction of different aldehydes with methyl acrylate followed by acetylation of the resulting allylic alcohols and SN2′‐type amination of the allylic acetates. Asymmetric hydrogenation of these diverse olefinic precursors using rhodium(Et‐Duphos) catalysts provided the corresponding β2‐amino acid derivatives with excellent enantioselectivities and exceedingly high reactivities (up to >99.5% ee and S/C=10,000). The first hydrogenation of (Z)‐configurated substrates was studied for the synthesis of β2‐amino acid derivatives. The high influence of the substrate geometry and steric hindrance on the reactivity and enantioselectivity was also disclosed for this reaction. This protocol provides a highly practical, facile and scalable method for the preparation of optically pure β2‐amino acids and their derivatives under mild reaction conditions.  相似文献   

9.
The first catalytic synthesis of β,γ‐alkynyl α‐amino acid derivatives was achieved by direct addition of terminal alkynes to α‐imino esters in the presence of an Ag(I) salt under mild reaction conditions.  相似文献   

10.
The first organocatalytic enantioselective Strecker synthesis of α‐quaternary α‐trifluoromethylated amino acids has been developed. Employing Takemoto’s thiourea catalyst the nucleophilic addition of trimethylsilyl cyanide to trifluoromethyl ketimines affords α‐amino nitriles in good to excellent yields (50–99%) and very good enantioselectivities (ee=83–95%). The enantiopure amino nitriles can be obtained by recrystallization. Deprotection and hydrolysis leads to the title amino acids.  相似文献   

11.
A quinine‐promoted, enantioselective Michael addition reaction of diphenyl phosphite with nitroalkenes has been developed. This methodology affords a facile access to enantiomerically enriched β‐nitrophosphates, precursors for the preparation of synthetically and biologically useful β‐aminophosphonates.  相似文献   

12.
The enantioselective acylation of racemic diisopropyl α‐ and β‐hydroxyphosphonates by hydrolases in t‐butyl methyl ether with isopropenyl acetate as acyl donor is limited by the narrow substrate specificity of the enzymes. High enantiomeric excesses (up to 99%) were obtained for the acetates of (S)‐diisopropyl 1‐hydroxy‐(2‐thienyl)methyl‐, 1‐hydroxyethyl‐ and 1‐hydroxyhexylphosphonate and (R)‐diisopropyl 2‐hydroxypropylphosphonate. The hydrolysis of a variety of β‐chloroacetoxyphosphonates by the lipase from Candida cylindracea and protease subtilisin in a biphasic system gives (S)‐β‐hydroxyphosphonates (ee 51–92%) enantioselectively. (S)‐2‐Phenyl‐2‐hydroxyethyl‐ and (S)‐3‐methyl‐2‐hydroxybutylphosphonates (ee 96% and 99%, respectively) were transformed into (R)‐2‐aminophosphonic acids of the same ee.  相似文献   

13.
A stereochemically promiscuous 2‐keto‐3‐deoxygluconate aldolase has been used as an efficient biocatalyst to catalyse the aldol reaction of pyruvate with C3‐ and C4‐aldoses to afford syn‐ and anti‐3‐deoxy‐2‐ulosonic acids in poor to good de. A continuous flow bioreactor containing immobilised aldolase has been developed that enables gram quantities of C6‐ and C7‐3‐deoxyhept‐2‐ulosonic acids to be produced in an efficient manner.  相似文献   

14.
15.
The reaction of the Cu(II) bis N,O‐chelate‐complexes of L‐2,4‐diaminobutyric acid, L‐ornithine and L‐lysine {Cu[H2N–CH(COO)(CH2)nNH3]2}2+(Cl)2 (n = 2–4) with terephthaloyl dichloride or isophthaloyl dichloride gives the polymeric complexes {‐OC–C6H4–CO–NH–(CH2)n–CH(nh2)(COO)Cu(OOC)(NH2)CH–CH2)n–NH‐}x 1 – 5 . From these the metal can be removed by precipitation of Cu(II) with H2S. The liberated ω,ω′‐N,N′‐diterephthaloyl (or iso‐phthaloyl)‐diaminoacids 6 – 10 react with [Ru(cymene)Cl2]2, [Ru(C6Me6)Cl2]2, [Cp*RhCl2]2 or [Cp*IrCl2]2 to the ligand bridged bis‐amino acidate complexes [Ln(Cl)M–(OOC)(NH2)CH–(CH2)nNH–CO]2–C6H4 11 – 14 .  相似文献   

16.
Access to enantiopure β‐amino acids : β‐Aminopeptidases are hydrolases that possess the unique ability to cleave N‐terminal β‐amino acids from peptides and amides. Hydrolysis of racemic β‐amino acid amides catalyzed by these enzymes displays enantioselectivity with strong preference for substrates with the L ‐configuration, and gives access to various aliphatic β‐amino acids of high enantiopurity.

  相似文献   


17.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


18.
Highly regio‐ and diastereoselective 1,2‐addition of organolithium reagents to chiral fluoroalkyl α,β‐unsaturated Ntert‐butanesulfinyl ketimines was developed, providing a general and efficient method for the asymmetric synthesis of structurally diverse α‐tertiary fluoroalkyl allylic amines in high yields and with excellent diastereoselectivities (dr up to>99:1). The synthetic application of the method was demonstrated by the rapid and convenient preparation of challenging α‐fluoroalkyl α‐amino acids with α‐tetrasubstituted carbon.

  相似文献   


19.
Asymmetric allylation of (hetero)aromatic aldehydes by a zinc(II)‐allylbutyrolactone species catalyzed by a chiral BINOL‐type phosphoric acid gave β‐substituted α‐methylenebutyrolactones in 68 to >99% ee and 52–91% isolated yield. DFT studies on the intermediate Zn2+‐complex – crucial for chiral induction – suggest a six‐membered ring intermediate, which allows the phosphoric acid moiety to activate the aldehyde. The methodology was applied to the synthesis of the antitumour natural product (S)‐(−)‐hydroxymatairesinol.

  相似文献   


20.
Biodegradable polymers/oligomers were successfully synthesized through a ring‐opening polymerization of ε‐caprolactone and L ,L ‐lactide, initiated by L ‐arginine and L ‐citrulline. The α‐amino acid initiators are natural, operationally simple, inexpensive, environmentally friendly and safe for human health. The polymerizations were performed with no solvents and without introducing any metal impurities. The chemical structures of the polymers obtained were elucidated using 1H NMR, 13C NMR and Fourier transform infrared spectroscopies. In addition, incorporation of α‐amino acid molecules into the polymer chain was confirmed using matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. Due to the significant biological activity of L ‐arginine and L ‐citrulline, these α‐amino acid initiators may open a new route for the synthesis of functional polymers especially for pharmaceutical applications. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号