首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new Polypropylene (PP)–clay blends, containing 5 wt % clay, were prepared by melt compounding with maleic anhydride grafted poly(ethylene‐co‐octene) (MAH‐g‐POE) as the compatibilizer by varying its content from 0 to 20 wt %. The effect of MAH‐g‐POE on the PP–clay miscibility was examined by X‐ray diffraction (XRD), scanning electronic microscope (SEM) observation, differential scanning calorimeter (DSC) analysis, dynamic mechanical thermal analysis (DMTA), and rheological testing in sequence. The results showed that the addition of MAH‐g‐POE could improve the dispersion of clay layers in PP matrix and promoted the interaction between PP molecules and clay layers. At 10 wt % MAH‐g‐POE, the PP–clay blend exhibited a highest value of Tc,onset and Tg as well as a biggest melt storage modulus (G′), indicating the greatest PP–clay interaction. On the other hand, improved toughness and stiffness coexisted in blends with 5–10 wt % loading of MAH‐g‐POE. In view of SEM and DMTA observations, MAH‐g‐POE was well miscible with the PP matrix, even with the concentration up to 20 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 2558–2564, 2006  相似文献   

2.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

3.
A series of polypropylene (PP) nanocomposites containing 2, 4, and 6 wt % of an organophilic montmorillonite clay was prepared via direct melt mixing in the presence of maleic anhydride grafted polypropylene (PP‐g‐MAH) as compatibilizing agent. Microstructure characterization was performed by X‐ray diffraction analysis. Nanocomposites exhibited a 15 and 22% enhancement in tensile modulus and impact strength, respectively. The heat deflection temperature of PP nanocomposites was 36°C greater than for pure PP. Thermal and mechanical properties of nanocomposites were compared to properties of traditional PP‐talc and PP‐glass fiber composites. The results showed that the properties of nanocomposites improved compared to ordinary polypropylene composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
In the present study, an epoxy resin was dynamically cured in a polypropylene (PP)/maleic anhydride–grafted PP (MAH‐g‐PP)/talc matrix to prepare dynamically cured PP/MAH‐g‐PP/talc/epoxy composites. An increase in the torque at equilibrium showed that epoxy resin in the PP/MAH‐g‐PP/talc composites had been cured by 2‐ethylene‐4‐methane‐imidazole. Scanning electron microscopy analysis showed that MAH‐g‐PP and an epoxy resin had effectively increased the interaction adhesion between PP and the talc in the PP/talc composites. Dynamic curing of the epoxy resin further increased the interaction adhesion. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had higher crystallization peaks than did the PP/talc composites. Thermogravimetric analysis showed that the addition of MAH‐g‐PP and the epoxy resin into the PP/talc composites caused an obvious improvement in the thermal stability. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best thermal stability of all the PP/talc composites. The PP/MAH‐g‐PP/talc/epoxy composites had better mechanical properties than did the PP/MAH‐g‐PP/talc composites, and the dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best mechanical properties of all the PP/talc composites, which can be attributed to the better interaction adhesion between the PP and the talc. The suitable content of epoxy resin in the composites was about 5 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

5.
A method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin with 2‐ethylene‐4‐methane‐imidazole (EMI‐2,4) was successfully applied in the PP/maleic anhydride‐grafted ethylene‐vinyl acetate copolymer (MAH‐g‐EVA), and the obtained blends named as dynamically cured PP/MAH‐g‐EVA/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of epoxy particle in the PP/MAH‐g‐EVA/epoxy blends shows that MAH‐g‐EVA was also used as a compatibilizer. The structure of the dynamically cured PP/MAH‐g‐EVA/epoxy blends is the embedding of the epoxy particles by the MAH‐g‐EVA. The cured epoxy particles as organic filler increases the stiffness of the PP/MAH‐g‐EVA blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing the epoxy resin content, and the impact strength reaches a maximum of 258 J/m at the epoxy resin content of 10 wt %. DSC analysis shows that the epoxy particles in the dynamically cured PP/MAH‐g‐EVA/epoxy blends could have contained embedded MAH‐g‐EVA, decreasing the nucleating effect of the epoxy resin. Thermogravimetric results show the addition of epoxy resin could improve the thermal stability of PP, the dynamically cured PP/MAH‐g‐EVA/epoxy stability compared with the pure PP. Wide‐angle x‐ray diffraction analysis shows that the dynamical cure and compatibilization do not disturb the crystalline structure of PP in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Ethylene‐octene elastomer (POE)/organo‐montmorillonite (OMT) and maleic anhydride‐grafted POE (POE‐g‐MAH)/OMT composites were prepared through melt mixing and influence of clay dispersion on thermal, dynamic mechanical, and flammability properties were investigated. The results showed that OMT forms intercalated/exfoliated structures in POE‐g‐MAH/OMT and agglomerated structure in POE/OMT microcomposites, resulting in more significant improvements of storage modulus and glass transition temperature in the POE‐g‐MAH/OMT rather than the POE/OMT composites. The POE‐g‐MAH/OMT nanocomposites have better thermal stability and significantly reduced flammability than the POE/OMT microcomposites, which was discussed on the basis of cone colorimeter test of the composites and energy dispersive X‐ray spectrum analysis of the combustion chars. POLYM. ENG. SCI., 54:2911–2917, 2014. © 2014 Society of Plastics Engineers  相似文献   

7.
Maleic‐anhydride‐grafted polypropylene (PP‐g‐MAH) was added, as a compatibilizer, to polypropylene (PP) composites filled with a hindered phenol and modified carbon black (CB). The interaction between the modified CB and PP‐g‐MAH, as proved by Fourier transform infrared spectroscopy, had a beneficial effect on the mechanical properties of the PP/(modified CB) composites and prevented the sharp decrease of the mechanical properties of these composites at higher filler concentration. The storage modulus of PP/(modified CB) was increased significantly by the incorporation of PP‐g‐MAH, especially when the temperature was lower than 0°C. When the content of PP‐g‐MAH was 5 wt% and the loading of the modified CB was 2 wt%, the best tensile strength was obtained. The system showed the best flexural strength and impact strength when the loading of the modified CB was 1 wt%. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

8.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
The electron‐beam preirradiation and reactive extrusion technologies were used to prepare maleic anhydride (MAH)/vinyltrimethoxysilane (VTMS)‐co‐grafting polypropylene (PP) as a high‐performance compatibilizer for wood‐flour/PP composites. The grafting content, chemical structure, and crystallization behavior of the compatibilizers were characterized through Fourier transform infrared spectroscopy, differential scanning calorimetry, and an extraction method. The effects of the compatibilizers on the mechanical properties, water absorption, morphological structure, and torque rheological behavior of the composites were investigated comparatively. The experimental results demonstrate that MAH/VTMS‐g‐PP markedly enhanced the mechanical properties of the composites. Compared with MAH‐g‐PP and VTMS‐g‐PP, MAH/VTMS‐g‐PP clearly showed synergistic effects on the increasing mechanical properties, water absorption, and compatibility of the composites. Scanning electron microscopy further confirmed that the adhesion and dispersion of wood flours in the composites were effectively improved by MAH/VTMS‐g‐PP. These results were also proven by the best water resistance of the wood‐flour/PP composites with MAH/VTMS‐g‐PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Polypropylene (PP)/layered double hydroxide (LDH) composites were prepared via melt‐compounding using both a carbonate‐LDH and an organo‐LDH (dodecyl benzene sulfonate DBS‐LDH) in different concentrations. Transmission electron microscopy and X‐ray diffraction analysis were used to investigate the morphology. The results showed that only by using DBS‐LDH the intercalation of polymer chains and a partial delamination were obtained. However, the introduction of maleic anhydride‐grafted polypropylene (PP‐g‐MAH), as coupling agent, favored the aggregation of the particles generating localized domains of aggregates. The thermo‐gravimetric analysis showed that PP/DBS‐LDH composites have a higher thermal stability than the pure matrix. Differential scanning calorimetry evidenced that both LDH and DBS‐LDH particles acted as nucleating agents increasing the crystallization temperature, even if, in the case of LDH the effect was observed only with the addition of the compatibilizer. The results collected by dynamic mechanical thermal analysis, beyond showing a significant increase of the matrix stiffness by incorporation of DBS‐LDH, evidenced an increase of the PP glass transition temperature (Tg) indicating a restriction of PP chain segment mobility due to the strong polymer‐particle interactions. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

11.
The phosphoric acid‐pentaerythritol‐melamine copolymer, which is composed of three main components of intumescent flame retardant (IFR) and has optimal intumescent degree, was selected as IFR. The influence of meleated polypropylene (PP‐g‐MAH) on the properties and compatibility of IFR polypropylene (PP) composites were studied. The results obtained from mechanical tests, rheological behavior of composites, and scanning electron microscope showed that PP‐g‐MAH was a true coupling agent for IFR/PP blends and did not change the necessary flame retardancy. The cocrystallization between bulk PP and PP segments of PP‐g‐MAH was also proven by WAXD analysis. Flow test showed that the flow behaviors of composites in the melt are those of a pseudoplastic and it is very small for PP‐g‐MAH affecting rheological behavior of the PP/IFR composite. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 257–262, 2002  相似文献   

12.
Polypropylene (PP)/clay nanocomposites were prepared by melt‐compounding PP with organomontmorillonite (OMT), using maleic anhydride grafted polypropylene (PP‐g‐MA) as the primary compatibilizer and N‐imidazol‐O‐(bicyclo pentaerythritol phosphate)‐O‐(ethyl methacrylate) phosphate (PEBI) as the cointercalating monomer. X‐ray diffraction patterns indicated that the larger interlayer spacing of OMT in PP was obtained due to the cointercalation monomer having a large steric volume and the d‐spacing further increased with the addition of PP‐g‐MA, as evidenced by transmission electron microscopy. Thermogravimetric analysis revealed that the PEBI‐containing PP nanocomposites exhibited better thermal stability than PEBI‐free PP composites. Dynamic mechanical analysis demonstrated that the storage modulus was significantly enhanced, and the glass transition temperature (Tg) shifted slightly to low temperature with the incorporation of clay for PP/OMT hybrids. PEBI‐containing PP/OMT composites gave a lower Tg value because of the strong internal plasticization effect of PEBI in the system. Cone calorimetry showed that the flame‐retardancy properties of PP nanocomposites were highly improved with the incorporation of PEBI. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by compounding maleic anhydride‐g‐polypropylene (MAPP) with MMT modified with α,ω‐diaminododecane. Structural characterization confirmed the formation of characteristic amide linkages and the intercalation of MAPP between the silicate layers. In particular, X‐ray diffraction patterns of the modified clay and MAPP/MMT composites showed 001 basal spacing enlargement as much as 1.49 nm. Thermogravimetric analysis revealed that the thermal decomposition of the composite took place at a slightly higher temperature than that of MAPP. The heat of fusion of the MAPP phase decreased, indicating that the crystallization of MAPP was suppressed by the clay layers. PP/MAPP/MMT composites showed a 20–35% higher tensile modulus and tensile strength compared to those corresponding to PP/MAPP. However, the elongation at break decreased drastically, even when the content of MMT was as low as 1.25–5 wt %. The relatively short chain length and loop structure of MAPP bound to the clay layers made the penetration of MAPP molecules into the PP homopolymer phase implausible and is thought to be responsible for the decreased elongation at break. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 307–311, 2005  相似文献   

14.
In this work, polypropylene/clay nanocomposites with 0.5, 1, 3, and 5 wt % of montmorillonite (MMT) (unmodified clay) were prepared by intensive mixing at 50 rpm and 10 min of mixing. For the highest clay content (5 wt %), the initial materials or the processing conditions were changed to study their independent effect. On one hand, 10 wt % of PP‐graft‐MA (PP‐g‐MA) was incorporated or MMT was replaced by organomodified clays (C10A and C30B). On the other side, for the initial system, the speed of rotation (100 and 150 rpm) and the mixing time (5 and 15 min) were altered. In all cases, the state of the clay inside the matrix (DRX), the degree of dispersion in the micro (SEM) and nano (TEM) scales, and the rheological and mechanical properties were analyzed. It was found that the stiffness increased with clay content, whereas tensile and impact strength did not significantly change. Although intercalated structures were observed in the composites with unmodified clay, in the composites with modified clay or PP‐g‐MA, improved dispersion of clay in PP was found. The mechanical properties increased accordingly. The degree of dispersion of the filler in the matrix appeared to be unaffected by the changes in the processing conditions introduced. Finally, the elastic modulus was modeled by using an effective filler‐parameter model based on Halpin–Tsai equations, which also allowed estimating the relative degree of dispersion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Five fungi including Aspergillus niger, Penicilium pinophilum, Chaetoomium globsum, Gliocladium virens and Aureobasium pullulans were used to investigate the biodegradation of starch‐based elastomers: polyethylene‐octene elastomer (POE)/starch and grafted POE‐g‐MAH/starch copolymer blends. The viability of the composite spore suspensions were measured before estimating the fungal growth on the surface of specimens. The weight loss, morphology and mechanical properties of the blended specimens were measured using scanning electron microscopy and a mechanical properties tester after 28 days of culturing. The spore suspension in the experiment showed good viability. Pure POE and POE‐g‐MAH did not allow significant fungal growth. Pure POE did not lose weight or have a change in tensile strength, but pure POE‐g‐MAH lost about 0.07% of its weight with a slight reduction in tensile strength during culture period. There was heavy growth on the surface of POE/starch and POE‐g‐MAH/starch blends after 28 days of culturing. The weight loss of POE/starch and POE‐g‐MAH/starch blends increased with increasing starch content. POE‐g‐MAH/starch blends tended to lose more weight than POE/starch blends. After biodegradation, the surface of POE/starch and POE‐g‐MAH/starch blends became rough with many holes and cracks, indicating that the films were eroded by the fungi. Tensile strength of POE/starch and POE‐g‐MAH/starch blends decreased after culturing because of microbial attack. On the contrary, elongation at break of POE‐g‐MAH/starch blends increased after biodegradation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114:3574–3584, 2009  相似文献   

16.
In this article, the dynamic vulcanization process was applied to polypropylene (PP)/Novolac blends compatibilized with maleic anhydride‐grafted PP (MAH‐g‐PP). The influences of dynamic cure, content of MAH‐g‐PP, Novolac, and curing agent on mechanical properties of the PP/Novolac blends were investigated. The results showed that the dynamically cured PP/MAH‐g‐PP/Novolac blend had the best mechanical properties among all PP/Novolac blends. The dynamic cure of Novolac improved the modulus and stiffness of the PP/Novolac blends. The addition of MAH‐g‐PP into dynamically cured PP/Novolac blend further enhanced the mechanical properties. With increasing Novolac content, tensile strength, flexural modulus, and flexural strength increased significantly, while the elongation at break dramatically deceased. Those blends with hexamethylenetetramine (HMTA) as a curing agent had good mechanical properties at HMTA content of 10 wt %. Scanning electron microscopy (SEM) analysis showed that dynamically cured PP/MAH‐g‐PP/Novolac blends had finer domains than the PP/MAH‐g‐PP/Novolac blends. Thermogravimetric analysis (TGA) results indicated that the incorporation of Novolac into PP could improve the thermal stability of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
The polypropylene‐graft‐cardanol (PP‐g‐cardanol) was prepared by reactive extrusion with polypropylene (PP) and natural renewable cardanol which could increase the interfacial energy of PP and inhibit the degradation of PP during the process of reactive extrusion and usage. In this article, PP‐g‐cardanol and polypropylene‐graft‐maleic anhydride (PP‐g‐MAH) were used as compatibilizers of the polypropylene (PP)/poly(acrylonitrile‐butadiene‐styrene) (ABS) blends. PP/ABS (70/30, wt %) blends with PP‐g‐cardanol and PP‐g‐MAH were prepared by a corotating twin‐screw extruder. From the results of morphological studies, the droplet size of ABS was minimized to 1.93 and 2.01 μm when the content of PP‐g‐cardanol and PP‐g‐MAH up to 5 and 7 phr, respectively. The results of mechanical testing showed that the tensile strength, impact strength and flexural strength of PP/ABS (70/30) blends increase with the increasing of PP‐g‐cardanol content up to 5 phr. The complex viscosity of PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol showed the highest value. Moreover, the change of impact strength and tensile strength of PP/ABS (70/30) blends were investigated by accelerated degradation testing. After 4 accelerated degradation cycles, the impact strength of the PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol decrease less than 6%, but PP/ABS (70/30) blends with 5 phr PP‐g‐MAH and without compatibilizer decrease as much as 12% and 32%, respectively. The tensile strength of PP/ABS (70/30) blends has a similar tendency to that of impact strength. The above results indicated that PP‐g‐cardanol could be used as an impact modifier and a good compatibilizer, which also exhibited better stability performance during accelerated degradation testing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41315.  相似文献   

18.
To investigate the effect of interfacial interaction on the crystallization and mechanical properties of polypropylene (PP)/nano‐CaCO3 composites, three kinds of compatibilizers [PP grafted with maleic anhydride (PP‐g‐MA), ethylene–octene copolymer grafted with MA (POE‐g‐MA), and ethylene–vinyl acetate copolymer grafted with MA (EVA‐g‐MA)] with the same polar groups (MA) but different backbones were used as compatibilizers to obtain various interfacial interactions among nano‐CaCO3, compatibilizer, and PP. The results indicated that compatibilizers encapsulated nano‐CaCO3 particles, forming a core–shell structure, and two interfaces were obtained in the compatibilized composites: interface between PP and compatibilizer and interface between compatibilizer and nano‐CaCO3 particles. The crystallization and mechanical properties of PP/nano‐CaCO3 composites were dependent on the interfacial interactions of these two interfaces, especially the interfacial interaction between PP and compatibilizer. The good compatibility between PP chain in PP‐g‐MA and PP matrix improved the dispersion of nano‐CaCO3 particles, favored the nucleation effect of nano‐CaCO3, increased the tensile strength and modulus, but reduced the ductility and impact strength of composites. The partial compatibility between POE in POE‐g‐MA and PP matrix had little effect on crystallization and mechanical properties of PP/nano‐CaCO3 composites. The poor compatibility between EVA in EVA‐g‐MA and PP matrix retarded the nucleation effect of nano‐CaCO3, and reduced the tensile strength, modulus, and impact strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylene–butyl acrylate–glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene–octene (POE‐g‐MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE‐g‐MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well‐balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE‐g‐MAH weakened the fiber/matrix bonding due to more POE‐g‐MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE‐g‐MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE‐g‐MAH increased it. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
In this article, we present a strategy for fabricating polypropylene (PP)/polypropylene‐regrafted single‐walled carbon nanotube (PP‐re‐g‐SWNT) composites with a high loading of single‐walled carbon nanotubes (SWNTs; 20 wt %). The PP‐re‐g‐SWNTs were characterized by X‐ray photoelectron, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The PP‐re‐g‐SWNTs showed excellent interfacial adhesion and dispersion. Furthermore, PP molecules, about 72 wt % by mass, were homogeneously bonded onto the surface of the SWNTs according to TGA. In this hybrid nanocomposite system, the PP‐re‐g‐SWNTs were covalently integrated into the PP matrix and became part of the conjugated network structure (as evidenced by differential scanning calorimetry and dynamic mechanical analysis) rather than just a separate component. Accordingly, the PP/PP‐re‐g‐SWNT composites presented obvious improvements in mechanical properties and conductivity (from 10?10 to 10?2). Most importantly, the tensile and flexural strength of the PP/PP‐re‐g‐SWNT composites did not exhibit an obvious downturn with the addition of 20 wt % SWNTs; this was contrary to documented results. We believe that these new observations were due to the novel structure of the PP‐re‐g‐SWNTs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39817.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号