首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by compounding maleic anhydride‐g‐polypropylene (MAPP) with MMT modified with α,ω‐diaminododecane. Structural characterization confirmed the formation of characteristic amide linkages and the intercalation of MAPP between the silicate layers. In particular, X‐ray diffraction patterns of the modified clay and MAPP/MMT composites showed 001 basal spacing enlargement as much as 1.49 nm. Thermogravimetric analysis revealed that the thermal decomposition of the composite took place at a slightly higher temperature than that of MAPP. The heat of fusion of the MAPP phase decreased, indicating that the crystallization of MAPP was suppressed by the clay layers. PP/MAPP/MMT composites showed a 20–35% higher tensile modulus and tensile strength compared to those corresponding to PP/MAPP. However, the elongation at break decreased drastically, even when the content of MMT was as low as 1.25–5 wt %. The relatively short chain length and loop structure of MAPP bound to the clay layers made the penetration of MAPP molecules into the PP homopolymer phase implausible and is thought to be responsible for the decreased elongation at break. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 307–311, 2005  相似文献   

2.
An experimental polypropylene (PP) nanocomposite, containing approximately 4 wt % of an organophilic montmorillonite clay, was prepared and characterized, and its properties were compared with those of talc‐filled (20–40 wt %) compositions. Weight reduction, with maintained or even improved flexural and tensile moduli, especially at temperatures up to 70°C, was a major driving force behind this work. By a comparison with the analytical data from a nylon 6 (PA‐6) nanocomposite, it was found that the PP nanocomposite contained well‐dispersed, intercalated clay particles; however, X‐ray diffraction, transmission electron microscopy, dynamic mechanical analysis, and permeability measurements confirmed that exfoliation of the clay in PP was largely absent. The increased glass‐transition temperature (Tg) of a PA‐6 nanocomposite, which possessed fully exfoliated particles, indicated the molecular character of the matrix–particle interaction, whereas the PP nanocomposite exhibited simple matrix–filler interactions with no increase in Tg. The PP nanocomposite exhibited a weight reduction of approximately 12% in comparison with the 20% talc‐filled PP, while maintaining comparable stiffness. Undoubtedly, considerable advantages may be available if a fully exfoliated PP nanocomposite is fabricated; however, with the materials available, a combination of talc, or alternative reinforcements, and nanocomposite filler particles may provide optimum performance. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1639–1647, 2003  相似文献   

3.
Polypropylene (PP) and acrylonitrile–butadiene–styrene blends of different composition were prepared using a single‐screw extruder. The binary blend of PP/ABS was observed to be incompatible and shows poor mechanical properties. PP‐g‐2‐hydroxyethyl methacrylate (2‐HEMA) was used as a compatibilizer for the PP/ABS blends. The ternary compatibilized blends of PP/ABS/PP‐g‐2‐HEMA showed improvement in the mechanical properties. Electron micrographs of these blends showed a homogeneous and finer distribution of the dispersed phase. The mechanical performance increased particularly in the PP‐rich blend. The 2.5‐phr (part per hundred of resin) compatibilizer was observed to bring improvement to the properties. The suitability of various existing theoretical models for the predication of the tensile moduli of these blends was examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 72–78, 2003  相似文献   

4.
A series of polypropylene (PP) nanocomposites containing 2, 4, and 6 wt % of an organophilic montmorillonite clay was prepared via direct melt mixing in the presence of maleic anhydride grafted polypropylene (PP‐g‐MAH) as compatibilizing agent. Microstructure characterization was performed by X‐ray diffraction analysis. Nanocomposites exhibited a 15 and 22% enhancement in tensile modulus and impact strength, respectively. The heat deflection temperature of PP nanocomposites was 36°C greater than for pure PP. Thermal and mechanical properties of nanocomposites were compared to properties of traditional PP‐talc and PP‐glass fiber composites. The results showed that the properties of nanocomposites improved compared to ordinary polypropylene composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by the esterification of propylene‐g‐maleic anhydride (MAPP) with MMT modified with α,ω‐hydroxyamines. The structural characterization confirmed the formation of ester linkages and the interaction between the silicate layers. In particular, X‐ray diffraction patterns of the modified clays and MAPP/MMT composites showed 001 basal spacing enlargement as great as 0.14–0.62 nm according to the type of α,ω‐hydroxyamine. Thermal characterization by thermogravimetric analysis for the composites revealed increased onset temperatures of thermal decomposition. The melting peak temperature decreased, and the crystallization peak temperature increased; this indicated that MMT retarded the crystallization of MAPP. Compounding PP with MAPP/MMT composites enhanced the tensile modulus and tensile strength of PP. However, the elongation at break decreased drastically even when the MMT content was as low as 0.4–2.0 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1229–1234, 2005  相似文献   

6.
The melt‐direct intercalation method was employed to prepare poly(propylene) (PP)–maleic anhydride grafted poly(propylene) (PP‐g‐MAH)–organic‐montmorillonite (Org‐MMT) nanocomposites. X‐ray diffractometry (XRD) was used to investigate the intercalation effect, crystallite size, and crystal cell parameter in these composites. Two kinds of maleated PP, with graft efficiencies of 0.6 and 0.9 wt %, and two sorts of manufacturing processes were used to prepare nanocomposites and then to investigate their effects on intercalation behavior. The results showed that the intercalation effect was enhanced by increasing the content of PP‐g‐MAH, using maleated PP with higher graft efficiency, and adopting the mold process. The crystallite size of nanocomposites perpendicular to the crystalline plane, such as (040), (130), (111), and (041), reached the minimum value when the content of PP‐g‐MAH was 20 wt %. This result indicated that the crystallite size of PP in nanocomposites decreased by proper addition of PP‐g‐MAH. Maximum values in tensile strength (40.2 MPa) and impact strength (24.3 J/m) were achieved when the content of PP‐g‐MAH was 10 and 20%, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3225–3231, 2003  相似文献   

7.
Environmentally benign, low cost and abundantly available short pineapple leaf fibers (PALF), found mostly in the Tropical rain forest climates are ideal materials for manufacture of thermoplastic polymer‐matrix composites. Here, mechanical and thermal properties of composites of maleic anhydride grafted polypropylene (MA‐g‐PP) and chemically modified short PALF are studied as a function of different fiber lengths at 10 vol % fibers loading with fiber orientation in the longitudinal direction. The effects of fiber lengths and fiber loading on the morphological properties are assessed via observations by scanning electron microscopy. Fiber length of 6 mm oriented longitudinally at 10 vol % fibers loading in PP is the optimum and recommended composition, where 73% increase in impact properties, 37% increase in the flexural modulus, 33% increase in flexural strength, and 14% increase in vicat softening temperature are observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
This article concerns the in situ compatibilization of immiscible isotatic polypropylene/styrene–butadiene–styrene triblock copolymer blends (i‐PP/SBS) by use of a reactive mixture. For this purpose, maleated PP (PP–MAH) and SBS (SBS–MAH) were used as functionalized polymers and 4,4′‐diaminediphenylmethane was used as a coupling agent between maleated polymers, resulting in a graft copolymer. Binary blends of i‐PP/SBS, nonreactive ternary blends of i‐PP/PP–MAH/SBS, and reactive ternary blends of i‐PP/PP–MAH/SBS–MAH with varying diamine/anhydride molar ratios were prepared. The mechanical properties of the blends were determined by tensile and impact‐resistance tests. The optimum improvement in the mechanical properties was found when the diamine/anhydride molar ratio in the ternary reactive blends was 0.5/1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 516–522, 2003  相似文献   

9.
The morphology and mechanical properties of isotactic polypropylene (iPP) and poly(ethylene‐co‐methyl acrylate) (EMA) blends were investigated. Various EMA copolymers with different methyl acrylate (MA) comonomer content were used. iPP and EMA formed immiscible blends over the composition range studied. The crystallization and melting reflected that of the individual components and the crystallinity was not greatly affected. The size of the iPP crystals was larger in the blends than those of pure iPP, indicating that EMA may have reduced the nucleation density of the iPP; however, the growth rate of the iPP crystals was found to remain constant. The tensile elongation at break was greatly increased by the presence of EMA, although the modulus remained approximately constant until the EMA composition was greater than 20%. EMA with a 9.0% MA content provided the optimum effect on the mechanical properties of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 175–185, 2003  相似文献   

10.
Ternary composites of polypropylene (PP), polydimethylsiloxane (PDMS) elastomer, and nano‐SiO2, prepared with three different mixing sequences, were studied for dispersion morphology and its effect on the crystallization of PP and the mechanical properties. The mixing sequence produced a significant effect on the dispersion morphology and, thereby, on the mechanical properties of the composites. A two‐step mixing sequence, in which nano‐SiO2 was added in the second step to the PP/PDMS binary system, produced a significant encapsulation of nano‐SiO2 by PDMS, and this, in turn, resulted in the poor modulus and impact strength of the composite. A one‐step mixing sequence of all three components produced a separated dispersion of PDMS and nano‐SiO2 phases in the PP matrix with the occurrence of a fine band of nano‐SiO2 particles at the boundaries of the PDMS domains and the presence of some nano‐SiO2 filler particles inside the PDMS domains. This one‐step mixing sequence produced an improvement in the tensile modulus but a decrease in the impact strength with increasing nano‐SiO2 content. In the third sequence of mixing, which involved a two‐step mixing sequence through the addition of PDMS in the second step to the previously prepared PP/nano‐SiO2 binary system, the morphology of the dispersion showed separately dispersed PDMS and nano‐SiO2 phases with a loose network of nano‐SiO2 particles surrounding the PDMS domains. This latter series of ternary composites had the highest impact strength and exhibited high shear deformation under tensile and impact conditions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Maleic anhydride‐modified polypropylene was compounded with commercially available surface‐modified montmorillonite in a twin‐screw extruder. Recompounding ensured the removal of visible tactoids from the extrudate but TEM and XRD techniques showed nonuniform dispersion of clay platelets. In this study, we investigated the mechanical and fracture properties of nanoclay‐filled polypropylene. Emphasis was placed on the fracture characterization of the clay‐filled polypropylene. Tensile strength and stiffness increased steadily with an increase in the clay loading. The toughness of compounded materials was characterized using rigorous fracture mechanics. J‐integral fracture resistance decreased with an increase in the clay content. The resistance against stable crack growth was compared using the slopes derived from the JR curve and the tearing modulus concept. A significant amount of crack growth resistance was evident in the nanoclay‐filled polypropylene as opposed to other brittle nanocomposites such as the nylon–clay systems. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3298–3305, 2003  相似文献   

12.
Polypropylene (PP) has wide applications in various areas, but its low‐temperature brittleness and low moduli have limited its applications in engineering areas. This article reported micro‐/nanoscale combinational inorganic fillers (CIFs) to reinforce PP‐matrix composites as the first example. The CIFs consisted of plate‐like talc (T), needle‐like wollastonite (W), and nano‐Al2O3 (N). The PP/CIFs specimens were fabricated via a process of twin‐screw extrusion and screw‐type injection molding. The mechanical properties and thermal deflection temperature (HDT) of the PP/CIF composites were tested according to the corresponding standards, and the morphologies of the tensile‐fractured sections were observed using FE‐SEM. The PP/WT composites had higher mechanical properties and HDTs than those of either PP/W or PP/T. Small amounts of Al2O3 nanocrystals together with WT simultaneously strengthened and toughened the PP‐matrix composites. The PP/WTN composite with 2.6% of nano‐Al2O3 had well‐balanced properties, enhanced by a large increment when compared with the PP matrix or PP/WT composites. The enhancements should be attributed to the synergistic effects of the CIFs not only in the aspect of various shapes (plate‐like, needle‐like, and spherical) but also in hierarchical size‐levels (microscale and nanoscale). The novel strategy overcame the limitation of conventional rigid modification and solved the problem of uniform dispersion of nanocrystals in polymer matrices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
The nonisothermal crystallization kinetics of poly(propylene) (PP), PP–organic‐montmorillonite (Org‐MMT) composite, and PP–PP‐grafted maleic anhydride (PP‐g‐MAH)–Org‐MMT nanocomposites were investigated by differential scanning calorimetry (DSC) at various cooling rates. Avrami analysis modified by Jeziorny and a method developed by Mo well‐described the nonisothermal crystallization process of these samples. The difference in the exponent n between PP and composite (either PP–Org‐MMT or PP–PP‐g‐MAH–Org‐MMT) indicated that nonisothermal kinetic crystallization corresponded to tridimensional growth with heterogeneous nucleation. The values of half‐time, Zc; and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PP and composites, but the crystallization rate of composites was faster than that of PP at a given cooling rate. The method developed by Ozawa can also be applied to describe the nonisothermal crystallization process of PP, but did not describe that of composites. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The results showed that the activation energy of PP–Org‐MMT was much greater than that of PP, but the activation energy of PP–PP‐g‐MAH–Org‐MMT was close to that of pure PP. Overall, the results indicate that the addition of Org‐MMT and PP‐g‐MAH may accelerate the overall nonisothermal crystallization process of PP. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3093–3099, 2003  相似文献   

14.
Thermoplastic olefin (TPO)/clay nanocomposites were made with clay loadings of 0.6–6.7 wt %. The morphology of these TPO/clay nanocomposites was investigated with atomic force microscopy, transmission electron microscopy (TEM), and X‐ray diffraction. The ethylene–propylene rubber (EPR) particle morphology in the TPO underwent progressive particle breakup and decreased in particle size as the clay loading increased from 0.6 to 5.6 wt %. TEM micrographs showed that the clay platelets preferentially segregated to the rubber–particle interface. The breakup of the EPR particles was suspected to be due to the increasing melt viscosity observed as the clay loading increased or to the accompanying chemical modifiers of the clay, acting as interfacial agents and reducing the interfacial tension with a concomitant reduction in the particle size. The flexural modulus of the injection moldings increased monotonically as the clay loading increased. The unnotched (Izod) impact strength was substantially increased or maintained, whereas the notched (Izod) impact strength decreased modestly as the clay loading increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 928–936, 2004  相似文献   

15.
This study was performed with commercially available phenyl trimethoxysilane (PTMS) and neoalkoxytitanate [i.e., neopentyl(diallyl)oxytri(dioctyl)phosphato titanate (LICA 12)] as coupling agents. PTMS and LICA 12 were used to treat talc and kaolin to compare their effects with untreated fillers upon incorporation into polypropylene (PP). Single‐filler PP composites (containing either talc or kaolin) and hybrid‐filler composites (containing a mix of both talc and kaolin) were compounded in a twin‐screw extruder and subsequently injection‐molded into dumbbells. The incorporation of PTMS and LICA 12 slightly decreased the tensile and flexural properties in terms of modulus and strength but increased the elongation at break for both single‐filler and hybrid‐filler composites. There was also a significant improvement in the impact strength of the composites, particularly those treated with LICA 12. The hybrid composites, through the synergistic coalescence of positive characteristics from talc and kaolin with the aid from chemical treatment provided an economically advantageous material with mechanical properties comparable to those of the single‐filler‐filled PP composites. Further investigations on flow and morphological properties were also done to correlate the mechanical properties of the single‐ and hybrid‐filler‐filled PP composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Bis(3‐triethoxysilylpropyl) tetrasulfane (TSS) was reacted with the silanol groups of the commercially available clay, Closite®25A (C25A) to prepare TSS‐C25A, which was melt‐compounded with acrylonitrile‐butadiene‐styrene copolymer (ABS). The tetra sulfide groups of TSS‐C25A may chemically react with the vinyl groups of ABS to enhance the interaction between the clay and ABS. The ABS/clay composites exhibited much higher tensile strength and elongation at break than the neat ABS. Especially the elongation at break of ABS/TSS‐C25A composite was 5 times higher than that of neat ABS. The X‐ray diffraction patterns of the clay showed that the d001 basal spacing was enlarged from 1.89 nm to 2.71–2.86 nm as a result of the compounding with ABS. According to the thermogravimetric analysis, the thermal decomposition of the composite took place at a slightly higher temperature than that of neat ABS. Intercalated/exfoliated coexisting structures were observed by transmission electron microscopy for the ABS/clay composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The mechanical and thermomechanical properties as well as microstructures of polypropylene/nylon 6/clay nanocomposites prepared by varying the loading of PP‐MA compatibilizer and organoclay (OMMT) were investigated. The compatibilizer PP‐MA was used to improve the adhesion between the phases of polymers and the dispersion of OMMT in polymer matrix. Improvement of interfacial adhesion between the PP and PA6 phases occurred after the addition of PP‐MA as confirmed by SEM micrographs. Moreover, as shown by the DSC thermograms and XRD results, the degree of crystallinity of PA6 decreased in the presence of PP‐MA. The presence of OMMT increased the tensile modulus as a function of OMMT loading due to the good dispersion of OMMT in the matrix. The insertion of polymer chains between clay platelets was verified by both XRD and TEM techniques. The viscosity of the nanocomposites decreased as PP‐MA loading increased due to the change in sizes of PA6 dispersed phase, and the viscosity increased as OMMT loading increased due to the interaction between the clay platelets and polymer chains. The clay platelets were located at the interface between PP and PA6 as confirmed by both SEM and TEM. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
In this study, a novel film structure of corn zein coated on polypropylene (PP) synthetic films for food packaging applications was developed, and the mechanical properties of the resulting coated film, as affected by the coating formulation, were investigated. Composite structures of PP films coated with corn zein were obtained through a simple solvent casting method. Different amounts of corn zein (5 and 15%) were dissolved in 70 and 95% aqueous ethanol solution at 50°C. Solutions of corn zein plasticized with poly(ethylene glycol) and glycerol (GLY) at various levels (20 and 50%) were applied on corona‐discharge‐treated PP. A statistical analysis based on full factorial design was performed to examine the influence of the coating formulation on the final properties of the corn‐zein‐coated PP films. A significant (p < 0.05) improvement in the coated film's mechanical properties was observed compared to those of the uncoated PP. The effect of the plasticization of the coating solutions was also quite significant. In general, GLY provided better improvements in the mechanical properties of the corn‐zein‐coated PP films. The statistical analysis of the results showed that the corn‐zein and plasticizer concentrations and plasticizer type used in the coating formulations were more effective parameters and had significant effects on the mechanical behavior of the coated PP films. In conclusion, corn‐zein coatings could have potential as alternatives to conventional synthetic polymers used in composite multilayer structures for food packaging applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Polypropylene (PP) composites filled with wood flour (WF) were prepared with a twin‐screw extruder and an injection‐molding machine. Three types of ecologically friendly flame retardants (FRs) based on ammonium polyphosphate were used to improve the FR properties of the composites. The flame retardancy of the PP/WF composites was characterized with thermogravimetric analysis (TGA), vertical burn testing (UL94‐V), and limiting oxygen index (LOI) measurements. The TGA data showed that all three types of FRs could enhance the thermal stability of the PP/WF/FR systems at high temperatures and effectively increase the char residue formation. The FRs could effectively reduce the flammability of the PP/WF/FR composites by achieving V‐0 UL94‐V classification. The increased LOI also showed that the flammability of the PP/WF/FR composites was reduced with the addition of FRs. The mechanical property study revealed that, with the incorporation of FRs, the tensile strength and flexural strength were decreased, but the tensile and flexural moduli were increased in all cases. The presence of maleic anhydride grafted polypropylene (MAPP) resulted in an improvement of the filler–matrix bonding between the WF/intumescent FR and PP, and this consequently enhanced the overall mechanical properties of the composites. Morphological studies carried out with scanning electron microscopy revealed clear evidence that the adhesion at the interfacial region was enhanced with the addition of MAPP to the PP/WF/FR composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Full exfoliation of clay/high density polyethylene (HDPE) nanocomposites was successfully achieved with the aid of maleated HDPE (PE‐g‐MAn), by melt blending in a twin‐screw extruder employing a long residence time configuration. The morphology of the composites was determined using wide‐angle X‐ray diffraction and transmission electron microscopy. The effects of clay content and state of clay dispersion on the rheological, tensile properties, and flame retardancy of nanocomposites containing very small amounts of clay, in the range of 0.05–1.0 wt %, were investigated in this study. It was demonstrated that achieving a higher degree of exfoliation for nanosized clay particles is key to enhancing the rheological, mechanical, and flame retarding properties even when small amounts of clay (less than 1%) are used. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号