共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of the investigations of the relations between structure, physical and usage properties of polyamide 6 (PA6) reinforced with multiwall carbon nanotubes (MWNTs) are presented. A method of in situ anionic bulk polymerization of ε‐caprolactam in the presence of MWNTs was used for the preparation of reinforced PA6. The polymerization product was crushed, and the pellets of PA6 and PA6/MWNTs composites were injection molded to produce the standard test specimens for various measurements. The surface morphology (SEM), thermal (DSC, TGA, DMTA), and mechanical properties (tensile strength, Charpy's notched impact strength) of these materials were examined. Some differences between our specimens and those obtained by hydrolytic polymerization of ε‐caprolactam (CL) were found. It was found that a small amount of carbon nanotube decreases the crystallinity degree of PA6 matrix in the composites. The thermal stability was higher than that for neat PA6. DMTA results showed that the magnitudes of the storage modulus are higher for the PA6/MWNTs composites than for the unmodified PA6 in the temperature range between ?90 and 200°C. The tensile strength and tensile modulus are higher compared with the neat PA6. The elongation at break showed no noticeable change in the range of MWNTs loading considered, while the Charpy's notched impact strength slightly decreased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
2.
The fullerene grafted poly(ε‐caprolactone) (PCL) was successfully synthesized with a graft efficiency of 80%. The fullerene moieties grafted onto the PCL chain aggregate into 1–2 μm particles so that a physical pseudo‐network is formed. Because of the existence of the network structure, the fullerene grafted PCL film can retain its shape at much higher temperatures than that of pure PCL film, as observed in dynamic mechanical tests. It shows a hydrophobic gelling behavior in chloroform solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
3.
Novel copolyesteramides were synthesized by reacting trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) with ε‐caprolactam (CLM) in the presence of stannous octoate [Sn(II) Oct.] as a catalyst. Various techniques, including 1H‐NMR, IR, DSC, and viscosity, were used to elucidate structural characteristics and thermal properties of the resulting copolymers. Data showed that the optimal reaction condition for the synthesis of the copolymers was obtained by using 3 wt % Sn(II) Oct. at 170°C for 24 h. The DSC analysis demonstrated amorphous structure for most of the copolymers. The glass‐transition temperature of the copolymers shifts to a higher temperature with increasing Hpr/CLM molar ratio. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐CLM)s was evaluated by weight loss measurements. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1615–1621, 2002 相似文献
4.
Biodegradable polyrotaxane‐based triblock copolymers were synthesized via the bulk atom transfer radical polymerization (ATRP) of n‐butyl methacrylate (BMA) initiated with polypseudo‐rotaxanes (PPRs) built from a distal 2‐bromoisobutyryl end‐capped poly(ε‐caprolactone) (Br‐PCL‐Br) with α‐cyclodextrins (α‐CDs) in the presence of Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine at 45 ºC. The structure was characterized in detail by means of 1H NMR, gel permeation chromatography, wide‐angle X‐ray diffraction, DSC and TGA. When the feed molar ratio of BMA to Br‐PCL‐Br was changed from 128 to 300, the degree of polymerization of PBMA blocks attached to two ends of the PPRs was in the range 382 ? 803. Although about a tenth of the added α‐CDs were still threaded onto the PCL chain after the ATRP process, the movable α‐CDs made a marked contribution to the mechanical strength enhancement, blood anticoagulation activity and protein adsorption repellency of the resulting copolymers. Meanwhile, they could also protect the copolymers from the attack of H2O and Lipase AK Amano molecules, exhibiting a lower mass loss as evidenced in hydrolytic and enzymatic degradation experiments. © 2013 Society of Chemical Industry 相似文献
5.
A microstructured chemical system, constructed with a microsieve dispersion mixer, a delay loop and a microhydrolyzer is designed to carry out the Beckmann rearrangement of cyclohexanone oxime to ?‐caprolactam. The system is operated with oleum as the dispersed phase, and cyclohexanone oxime n‐octane solution as the continuous phase. The mixing performance, conversion of cyclohexanone oxime and selectivity to ?‐caprolactam are investigated and the results show that the reaction can be very well controlled due to the formation of microdroplets ranging from 10–25 μm. Under optimized conditions, the reaction can be accomplished with a residence time less than 40 s, and the selectivity higher than 99%. A two‐stage technology of low‐temperature to induce reaction, and high‐temperature to enhance reaction is developed, and the corresponding molar ratio of oleum to cyclohexanone oxime can be reduced to 0.8, which is much lower than the industrial value of 1.2. © 2011 American Institute of Chemical Engineers AIChE J, 2012 相似文献
6.
Gaetano Giammona Gennara Cavallaro Giovanna Pitarresi Elisa Pedone 《Polymer International》2000,49(1):93-98
In the present study the derivatization of two water‐soluble synthetic polymers, α,β‐poly(N‐2‐hydroxyethyl)‐DL ‐aspartamide (PHEA) and α,β‐polyasparthylhydrazide (PAHy), with glycidyltrimethylammonium chloride (GTA) is described. This reaction permits the introduction of positive charges in the macromolecular chains of PHEA and PAHy in order to make easier the electrostatic interaction with DNA. Different parameters affect the reaction of derivatization, such as GTA concentration and reaction time. PHEA reacts partially and slowly with GTA; on the contrary the reaction of PAHy with GTA is more rapid and extensive. The derivatization of PHEA and PAHy with GTA is a convenient method to introduce positive groups in their chains and it permits the preparation of interpolyelectrolyte complexes with DNA. © 2000 Society of Chemical Industry 相似文献
7.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
8.
Novel polyesters, poly[(ε‐caprolactone)‐co‐(N‐trityl‐L ‐serine‐β‐lactone)]s, were prepared by copolymerizing ε‐caprolactone (CL) with N‐trityl‐L ‐serine‐β‐lactone (TSL) using ZnEt2 as the catalyst. The number‐average molecular weights were determined which ranged from 2.7 × 104 to 4.9 × 104 Da with dispersity values ranging from 1.6 to 1.8. The structures of the copolymers were investigated by means of 1H NMR, 13C NMR and infrared spectroscopies, thermogravimetric analysis and differential scanning calorimetry. The results indicated that CL and TSL monomer units were randomly distributed within the copolymer backbone structures and the ratios of TSL to CL in the copolymers were close to those in the feeds. After removal of the trityl group under mild condition, a new polyester with side amino groups provided by serine units was obtained. L929 cell culturing test indicated good biocompatibility of the polyester with or without protective groups. © 2012 Society of Chemical Industry 相似文献
9.
Xu‐Jie Yang Xin Wang Dao‐Yong Chen Juan Yang Lu‐De Lu Xiao‐Qiang Sun Guang‐Yu He Jing Chen 《应用聚合物科学杂志》2000,77(11):2363-2369
A series of novel metal‐containing aromatic polyimides were synthesized from divalent metal oxide/hydroxide (MO/M(OH)2) (M = Ba, Sr, Ca, Mg, Zn, Cd, Co, Ni, Pb, Cu), p‐aniline sulfonic acid (ASA), and 3,3′‐4,4′‐benzophenonetetracarboxylic dianhydride (BTDA). The C, H, N, and S contents were determined by elemental analysis, their structures were characterized by proton nuclear magnetic resonance (1H‐NMR) and Fourier transform infrared (FT‐IR) spectroscopy, and the thermal properties of the polymers were also studied by TG–DTA. It is found that metal‐containing polyimides have a higher thermal stability. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2363–2369, 2000 相似文献
10.
A germyl‐bridged lanthanocene chloride, Me2Ge(tBu‐C5H3)2LnCl (Ln = Nd; (Cat‐ Nd ), was prepared and successfully used as single catalyst to initiate the ring‐opening polymerization of ε‐caprolactone (ε‐CL) for the first time. Under mild conditions (60°C,[ε‐CL]/[Ln] = 200, 4 h), Cat‐ Nd efficiently catalyzes the polymerization of ε‐CL, giving poly(ε‐caprolactone) (PCL) with high molecular weight (MW) (>2.5 × 104) in high yield (>95%). The effects of molar ratio of [ε‐CL]/Cat‐Nd, polymerization temperature and time, as well as solvent were determined in detail. When the polymerization is carried out in bulk or in petroleum ether, it gives PCL with higher MW and perfect conversion (100%). The higher catalytic activity of this neodymocene chloride could be ascribed to the bigger atom in the bridge of bridged ring ligands. Some activators, such as NaBPh4, KBH4, AlEt3, and Al(i‐Bu)3, can promote the polymerization of ε‐CL by Cat‐ Nd, which leads to an increase both in the polymerization conversion and in the MW of PCL. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 1212–1217, 2012 相似文献
11.
Random copolymers of trimethylene carbonate (TMC) and ε‐caprolactone (CL) have been synthesized by ring‐opening polymerization of TMC and CL in the presence of stannous octoate. The effects of feeding dose, reaction temperature and polymerization time, and effect of catalyst content on the copolymerization were investigated. The results showed that the composition of the copolymers was in good agreement with the feeding dose, and the molecular weight of the copolymers decreased firstly with increasing CL content and then increased. The decrease in the reaction temperature, polymerization time and catalyst content would increase the molecular weight of the copolymers. Furthermore, the feeding dose affected the thermal and mechanical properties of the copolymer largely, and the possessing different properties of random copolymers could be obtained by adjusting the copolymer compositions. This work could optimize the polymerization conditions to achieve the copolymers with controlled properties for implant applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
12.
Poly(vinyl alcohol)‐initiated microwave‐assisted ring opening polymerization of ε‐caprolactone in bulk was investigated, and a series of poly(vinyl alcohol)‐graft‐poly(ε‐caprolactone) (PVA‐g‐PCL) copolymers were prepared, with the degree of polymerization (DP) of PCL side chains and the degree of substitution (DS) of PVA by PCL being in the range of 3–24 and 0.35–0.89, respectively. The resultant comb‐like PVA‐g‐PCL copolymers were confirmed by means of FTIR, 1H NMR, and viscometry measurement. The introduction of hydrophilic backbone resulted in the decrease in both melting point and crystallization property of the PVA‐g‐PCL copolymers comparing with linear PCL. With higher microwave power, the DP of PCL side chains and DS of PVA backbone were higher, and the polymerization reaction proceeded more rapidly. Both the DP and monomer conversion increased with irradiation time, while the DS increased first and then remained constant. With initiator in low concentration, the DP and DS were higher, while the monomer was converted more slowly. Microwaves dramatically improved the polymerization reaction in comparison of conventional heating method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3973–3979, 2007 相似文献
13.
Summary: Poly(ε‐caprolactone)‐polyglycolide‐poly(ethylene glycol) monomethyl ether random copolymers were synthesized from ε‐caprolactone (ε‐CL), glycolide (GA) and poly(ethylene glycol) monomethyl ether (MPEG) using stannous octoate as catalyst at 160 °C by bulk polymerization. The copolymers with different composition were synthesized by adjusting the weight ration of reaction mixture. The resultant copolymer with a weight ratio (10:15:75) of MPEG2000, GA, and CL was characterized by IR, 1H NMR, GPC and DSC. The new biodegradable copolymer has potential for medical applications since it is combined with properties of PCL, PGA and MPEG.
14.
In this paper, a possible solution for the determination of reaction kinetics in reactive extrusion processes by in‐line conversion and temperature measurement using infrared technology is proposed. As a model reaction, the activated anionic polymerization of ε‐caprolactam was used. In lab experiments, the aptitude of the used probes for the desired application is tested. The final extrusion experiments were done using a tightly intermeshing co‐rotating twin‐screw extruder. The results show that the used probes are suitable in general. In the extrusion experiments, problems occurred regarding the material exchange on the conversion measurement probe. Due to these problems, reliable conversion measurements could not be done. Several proposals are made for the improvement of this measurement system. 相似文献
15.
2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene was used as initiator in ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate (Sn(Oct)2) catalyst. The resulting poly(ε‐caprolactone) (PCL) macromonomer, with a central 2,5‐dibromo‐1,4‐diphenylene group, was used in combination with 1,4‐dibromo‐2,5‐dimethylbenzene for a Suzuki coupling in the presence of Pd(PPh3)4 as catalyst or using the system NiCl2/bpy/PPh3/Zn for a Yamamoto‐type polymerization. The poly(p‐phenylenes) (PPP) obtained, with PCL side chains, have solubility properties similar to those of the starting macromonomer, ie soluble in common organic solvents at room temperature. The new polymers were characterized by 1H and 13C NMR and UV spectroscopy and also by GPC measurements. The thermal behaviour of the precursor PCL macromonomer and the final poly(p‐phenylene)‐graft‐poly(ε‐caprolactone) copolymers were investigated by thermogravimetric analysis and differential scanning calorimetry analyses and compared. Copyright © 2004 Society of Chemical Industry 相似文献
16.
Synthesis and characterization of polyurethane elastomers based on chitosan and poly(ε‐caprolactone)
Biodegradable polyurethane (PU) elastomers with potential for biomedical and industrial applications were synthesized by the reaction of poly(ε‐caprolactone) (PCL) and isophorone diisocyanate (IPDI), extended with different mass ratio of chitosan and 1,4‐butane diol (BDO). Their chemical structures were characterized using FTIR, 1HNMR, and 13CNMR, and thermal properties were determined by TGA and DMTA. Incorporation of chitosan contents into the polyurethane backbone caused improvement in thermal stability and thermal degradation rate. Optimum thermal properties and degradation profile were obtained from elastomer extended with chitosan. The crystallinity and hydrophilicity of the prepared polymers were also examined by X‐ray and contact angle measurements. The results showed that hydrophilicity decreased and crystallinity increased with increasing of chitosan content in polyurethane backbone. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
17.
Two new adsorbents [β‐cyclodextrin–chitosan (β‐CD–CTS) and β‐cyclodextrin‐6–chitosan (β‐CD‐6‐CTS)] were synthesized by the reaction of β‐cyclodextrin (β‐CD) with epoxy‐activated chitosan (CTS) and the sulfonation of the C‐6 hydroxyl group of β‐cyclodextrin with CTS, respectively. Their structures were confirmed by IR spectral analysis and X‐ray diffraction analysis, and their apparent amount of grafting was determined by ultraviolet spectroscopy. The adsorption properties of β‐CD‐CTS and β‐CD‐6‐CTS for p‐dihydroxybenzene were studied. The experimental results showed that the two new adsorbents exerted adsorption on the carefully chosen target. The highest saturated capacity of p‐dihydroxybenzene of β‐CD‐CTS and β‐CD‐6‐CTS were 51.68 and 46.41 mg/g, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 860–864, 2004 相似文献
18.
Aliphatic [n]‐polyurethanes have recently been synthesized from ω‐isocyanato‐α‐alkanols or, more traditionally, by cationic ring‐opening polymerization of cyclourethanes or by the Bu2Sn(OMe)2‐promoted polycondensation of ω‐hydroxy‐α‐O‐phenylurethane alkanes. For the latter procedures, the conditions employed do not seem to be suitable for highly functionalized monomers. In contrast, the polymerization of ω‐amino‐α‐phenylcarbonate alkanes is expected to occur under milder conditions. ω‐Amino‐α‐phenylcarbonate alkanes have been synthesized from 6‐aminohexanol (1) and 3‐aminopropanol (6). The procedure involves the N‐Boc protection of the amino group, followed by activation of the alcohol. Removal of the N‐Boc affords the corresponding ω‐amino‐1‐O‐phenyloxycarbonyloxyalkane hydrochlorides. Other oligomeric comonomers between 1 and 6 have been prepared. The polymerization of these precursors takes place in the absence of metal catalysts to afford the corresponding linear and regioregular [n]‐polyurethanes. The procedure described is useful for the preparation of stable ω‐amino‐α‐phenylcarbonate alkane derivatives, which possess varied chain lengths between the terminal functions. These monomers yield [n]‐polyurethanes having various structures starting from just two aminoalkanols. The polyurethanes were obtained in high yields, with reasonable molecular weight and polydispersity values, and they were characterized spectroscopically and thermally. These studies reveal constitutionally uniform structures that are free of carbonate or urea linkages. Copyright © 2010 Society of Chemical Industry 相似文献
19.
Triphenylamine‐based oligomers and polymers with linear, hyperbranched, star‐shaped or dendrimer architectures have been synthesized and studied due to their interesting electro‐optical properties. In many cases insoluble materials are obtained. In this study, we report the synthesis of grafted polytriphenylamine by chemical and electrochemical polymerization of triphenylamine‐end‐functionalized poly(ε‐caprolactone). Functionalized ε‐caprolactone oligomers were obtained by ring‐opening polymerization of ε‐caprolactone initiated by 4‐hydroxymethyltriphenylamine/stannous octanoate (tin 2‐ethylhexanoate). The ring‐opening polymerization of ε‐caprolactone using 4‐hydroxymethyltriphenylamine/stannous octanoate as initiating system provided ε‐caprolactone oligomers, with well‐defined molecular weights, containing a triphenylamine terminal group. Chemical and electrochemical coupling oxidation of the triphenylamine ends allowed the formulation of polyarylamines with ε‐caprolactone oligomers as grafts. Graft copolymers with an aryleneamine backbone and short poly(ε‐caprolactone) grafts were obtained by (electro)chemical oxidation of oligomers containing triphenylamine terminal groups. Copyright © 2009 Society of Chemical Industry 相似文献
20.
H. V. Vijayanand L. Arunkumar P. M. Gurubasawaraj P. M. Veeresha Sharma S. Basavaraja A. Saleem A. Venkataraman Anil Ghanwat N. N. Maldar 《应用聚合物科学杂志》2007,103(2):834-840
Novel polyimide‐γ‐Fe2O3 hybrid nanocomposite films (PI/γ‐Fe2O3) has been developed from the poly(amic acid) salt of oxydianiline with different weight percentages (5, 10, 15 wt %) of γ‐Fe2O3 using tetrahydrofuran (THF) and N,N‐dimethylacetamide (DMAc) as aprotic solvents. The prepared polyimide‐γ‐Fe2O3 nanocomposite films were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), transmission electron micrograph (TEM), X‐ray diffraction (XRD), 13C‐NMR, and thermal analysis (TGA/DSC) techniques. These studies showed the homogenous dispersion of γ‐Fe2O3 in the polyimide matrix with an increase in the thermal stability of the composite films on γ‐Fe2O3 loadings. Magnetization measurements (magnetic hysteresis traces) have shown very high values of coercive force indicating their possible use in memory devices and in other related applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 834–840, 2007 相似文献