首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, selection of screw configurations as well as the operating conditions for compounding polymer blends with desired morphology in a co-rotating twinscrew extruder is an art based on experience. In this paper a quenching section of a twin-screw extruder is described. The section may replace any segment of the extruder barrel. It allows, on the one hand, a regular operation of the machine, and on the other, a rapid quenching and removal of blend specimens for morphology analysis from any place along the extruder barrel and at any time of the blending. The experimental observation of development during compounding of polymer blends enables verification and improvement of the theoretical model, aimed at predicting and controlling the size and polydispersity of the minor phase. Development of the predictive model for blend morphology will provide a valuable guide to the polymer processing industry. The preliminary data were collected using polystyrene/high density polyethylene (PS/HDPE) blends at low concentration of the dispersed phase, 5 wt% of either PS or HDPE. It was observed that the viscosity ratio, blend composition, screw configuration, temperature, throughput, and screw speed significantly influence the blend morphology.  相似文献   

2.
This study investigated the effect of blend composition and processing conditions on the chemical conversion and morphological evolution of PA‐6/EPM/EPM‐g‐MA blends along a twin‐screw extruder. The maleic anhydride (MA) content of the modified rubber was found to decrease strongly, to a level of almost zero, and in the melting zone the particle size was dramatically reduced, from millimeters to submicrometers. Blend composition had a secondary effect on both chemical conversion and morphological development. The processing conditions, particularly the temperature profile and the screw speed, affected both the chemical conversion and the morphological evolution. Using low temperatures and low screw rotation it was possible to follow in detail the evolution of morphological development of a reactive blend in a twin‐screw extruder. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1535–1546, 2001  相似文献   

3.
The evolution of the properties of PA‐6/EPM‐g‐MA blends are investigated along a twin‐screw extruder in terms of chemical conversion, morphology development, and rheology evolution. Despite the interfacial structure of the various blends with different composition being distinct, an important decrease of the MA content at the first kneading zone from 0.5 to approximately 0.1 wt.% MA and only a slight decrease further downstream is generally observed. In all cases in‐situ compatibilization reactions occur in the melting zone within a few seconds. The relative differences in morphology can be directly explained by differences in blend composition. Although the morphology development along the extruder of the various blends as monitored by electron microscopy seems to follow a pattern similar to that of chemical conversion, their viscoelastic response shows a more gradual evolution.  相似文献   

4.
Compounding extruders are still designed based on experience and time‐consuming experimental examinations. This work investigates the morphology development of incompatible polyblends along a mixing zone at the end of a corotating twin‐screw extruder. During the process, the samples are taken from the running extruder using special barrel plates. These samples are subsequently examined by means of scanning electron microscopy (SEM). This method allows sampling in less than 1 min and thus extremely fast and almost unaffected. The experimental investigation of the morphology development improves the knowledge about the factors essentially influencing the blending process. It also allows the verification as well as improvement of theoretical models. Polyblends of polypropylene (PP) and polyamide (PA) with 7.5, 15, and 30 wt % PA were examined. As well as the relevance of the mass percentage of the dispersed phase, the influence of the screw geometry, the screw speed, the melt temperature, the melt throughput, and the pressure profile was investigated. Apart from the melt throughput, all varied factors show an influence on the resulting blend morphology that may not be neglected. However, the changes of the mean particle sizes in the observed mixing zones are only gradual (mean particle size ≈ 1–4 μm), which can be attributed to the extremely fine blend morphology already existing during or after the melting. That means that the application of “classic melting zones” generally already produces finely dispersed blend morphologies, thus proving the essential importance of the melting zones regarding the development of the blend morphology. Consequently, the mean particle sizes, calculated by means of quantitative image analyses of SEM micrographs in the mixing zones following the homogenizing section only slightly depend on the compounding conditions (screw speed, melt throughput, screw geometry, melt temperature, and pressure profile). However, the direct visual analysis of the SEM images, especially in the first parts of the mixing zones, shows the simultaneous existence of large PA6 particles in the PP matrix. In addition, a downstream unification of the particle size distribution can be observed. Especially the number and size of the coarser particles decreases in the mixing zones. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 708–721, 2000  相似文献   

5.
6.
Abstract

A laboratory fully modular instrumented single screw extruder designed to gather information on the development along its axis of temperature, mixing, chemical conversion and/or morphology development of a given material is presented. Some of its capabilities are utilised to study the effect of operating conditions and of screw geometry, including conventional versus barrier profiles, on the evolution of the plasticating sequence of a low density polyethylene. Melting of an immiscible polymer blend (polyamide 6/polypropylene) is also investigated and a specific melting mechanism is proposed.  相似文献   

7.
利用剖分式料筒振动诱导单螺杆挤出机以及透明料筒振动诱导单螺杆挤出机对振动力场作用下的熔融过程进行了可视化实验研究,获得了熔融过程的固体床宽度分布曲线;对比了不同振动参数条件下的熔融长度与无振动条件下的熔融长度。实验结果表明,振动的引入可加快熔融进程,缩短熔融长度。对应不同的材料,不同的螺杆转速、料筒温度设置等工艺条件存在一个振动强度范围,在此范围内随着振动强度的增加,熔融速度进一步加快。  相似文献   

8.
A previously proposed but further modified theoretical model for melting in plasticating extruders, in the form of a computer program, which predicts the amount of unmelted polymer at any point in the extruder, was used to simulate the effect of geometrical and operating variables on the melting performance of the extruder. The results indicate in increasing screw length required to complete melting with increasing throughput and a decreasing length of melting with increasing frequency of screw rotation. They further indicate the existence of an optimum barrel temperature for a maximum rate of melting, an optimum number of threads for a maximum melting rate, and a significant decrease in the rate of melting with increasing flight clearance. The effect of other geometrical variables and of operating conditions on the rate of melting and power consumption are also discussed.  相似文献   

9.
In a plasticating screw extruder, a polymer melt forms in the melting zone of the extruder. Pressurization of the molten polymer takes place in the melting and the metering sections so that the melt can flow through the restricted passage of the die and assume a desired shape. In a melt fed extruder, the throughput is governed by the pressure rise over the entire length of the extruder. The pressure developed in the screw channel may also be employed in rapid filling of molds, such as those in injection molding. When the geometry of the screw, the barrel temperature, and the die are selected, a unique set of operating parameters arise for a particular flow rate or screw speed. In the present study, numerical and analytical methods are used to calculate the transport in the extruder and the pressure drop in the die. An iterative numerical method based on solving the equations of motion and energy in the screw channel and a correction scheme to couple the die with the screw channel is discussed. The numerical algorithm is capable of handling an arbitrary variation of the viscosity of the polymeric fluid with the shear rate and temperature. The results obtained by simulating the fluid flow in the screw channel are compared with available numerical and experimental results in the literature, indicating good agreement. The performance characteristics of the extruder, for chosen thermal boundary conditions and screw geometry, are presented for different die geometries and different fluids. The important considerations that arise in the numerical simulation of the extrusion process are also discussed.  相似文献   

10.
The copolymerization of n-butylmethacrylate with 2-hydroxypropylmethacrylate was studied in a closely intermeshing counterrotating twin-screw extruder. The average molecular weight of the product can be increased by increasing the screw rotation rate or the die resistance or by decreasing the throughput or the barrel temperature. The conversion can be improved by decreasing the throughput, increasing the die resistance, and (within limits) increasing the barrel temperature, as well as through post-initiation. Compared with various classical polymerization processes, this situation requires that particular attention be paid to the occurrence of a gel effect, the existence of a thermodynamic ceiling temperature, and the reactivity ratio of the monomers used.  相似文献   

11.
A novel melting model for single screw extruders with a grooved melting zone was established. The whole solid plug, which came from the grooved feed zone, was ruptured and melted mainly by continuously changing the volume of the barrel grooves and the screw channel in the grooved melting zone. A new single screw extruder platform with hydraulic clamshell barrels was constructed to investigate the melting of solid polymer with different combinations of barrels and screws. The melting model was verified by experiments. The results showed that the melting started earlier and finished in a shorter length for single screw extruders with a grooved melting zone than that for conventional single screw extruders and the melting efficiency was improved by introducing a grooved melting zone to a single screw extruder. The theoretical values are consistent with experimental results. The novel single screw extruder with grooved melting zone can dramatically increase the plasticizing efficiency and the throughput.  相似文献   

12.
This paper concerns the morphology development of in situ compatibilized semicrystalline polymer blends in a co-rotating, intermeshing twin-screw extruder, using polypropylene (PP) and polyamide 6 (PA-6) blends as model systems. The morphology of in situ compatibilized blends develops much faster that of mechanical ones. The size of the dispersed phase (PA-6) undergoes a 104 fold reduction from a few millimeters to sub-micron during its phase transition from solid pellets to a viscoelastic fluid. The final morphology is reached as soon as the phase transition is completed, which usually requires only a small fraction of the screw length in a co-rotating twin screw extruder. Screw profiles and processing conditions (screw speed, throughput and barrel temperature) control the PA-6's melting location and/or rate, but do not have significant impact on the ultimate morphology and mechanical properties of in situ compatibilized blends. The finding that morphology of PP/PA-6 reactive blend develops rapidly makes it possible to produce compatibilized PP/PA-6 blends by the so-called one-step reactive extrusion. It integrates the traditionally separated free radical grafting of maleic anhydride onto PP and the compatibilization of PP/PA-6 into a single extrusion step.  相似文献   

13.
The effect of a vibration force field on the melting process of an extruder is studied. It is shown that the mechanism for melting differs from conventional theory. Experimental studies of melting of low‐density polyethylene (LDPE) pellets in a vibration‐induced single‐screw (VISS) extruder show that melting is initiated on the inside of the barrel and the surface of screw. Models were developed that explain the melting mechanism in those regions. The melting at the surface of the screw is mainly initiated by frictional work on the pellets by the vibration and rotation of the screw. The melting action at the barrel is induced by a barrel temperature higher than the melting point and propagated by viscous dissipation heating of the melt film produced. The theory is supplemented by a calculation sample, which shows good agreement with experimental data obtained on a transparent barrel VISS (T‐VISS) extruder and a half‐open barrel VISS (H‐VISS) extruder with LDPE. The results of the experiment and calculation sample indicate that the introduction of vibration‐induced field can improve the melting capacity of extruder to a great extent. The present model enables the prediction of processing parameters for VISS extruders, from which the optimum operating conditions can be obtained. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2504–2514, 2007  相似文献   

14.
The residence time distribution (RTD) in a fully intermeshing, corotating twin screw extruder was determined with a stimulus-response technique. In addition to varying three process parameters (i.e. throughput, screw rotational speed, and barrel temperature), two screw configurations were also studied: one containing four kneading block mixing sections, and the other consisting only of regular screw bushings. Although screw configuration was an important variable, it was found that for both configurations the throughput had the largest effect on RTD. The screw rotational speed was second in importance, and the barrel temperature change produced no effect. A fluid mechanical model based on the fluid flow in a partially-filled rectangular channel was used to explain the experimentally observed dependence of RTD on the process parameters. Reaction engineering approaches were adopted to compare the RTD results of two screw configurations with two idealized flows.  相似文献   

15.
A theoretical model for the cationization of plasticized wheat starch in a modular seIf‐wiping co‐rotating twin screw extruder was developed. Our objective was to build a model which would be able to predict the evolution of the cationization reaction along the screws, in relation with the processing conditions and the geometry of the twin screw extruder. Based on previous studies on reactive extrusion modeling, the present model takes into account the interactions occurring between the flow conditions encountered in the extruder and the kinetics of the reaction. It allows one to predict the influence of operating parameters such as reagent concentrations, feed rate, screw speed, and barrel temperature on the reaction extent. Depending on conditions, degrees of substitution in the range 0.01–0.05 are obtained, with efficiencies between 30 and 90%. A good agreement is found between theoretical results and experimental measurements, allowing future use of the model for optimization and scale‐up purposes. POLYM. ENG. SCI., 47:112–119, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
This article describes the synthesis of poly(ω‐lauryl lactam) by a reactive extrusion process. Anionic ring‐opening polymerization was performed in an intermeshing corotating twin‐screw extruder. We investigated the evolution of conversion of ω‐lauryl lactam as a function of reaction time, screw speeds, different feed rates, and different screw configurations along the screw axis in a twin‐screw extruder. For comparison with continuous polymerization in a twin‐screw extruder, we studied polymerization in an internal mixer, which was considered a batch reactor. We found the final conversion of ω‐lauryl lactam made in a twin‐screw extruder was higher than in an internal mixer. Higher molecular weights are found at lower screw speeds and feed rates. Melt viscosities and mechanical properties of the polymers were measured. Residence time, molecular weights, and shear mixing have the main effect on the mechanical properties of products. The twin‐screw extruder performance was interpreted in terms of commercial software. It was found that twin‐screw extruder reaction rate was higher than those in the batch reactor and increased locally with screw speed and feed rate. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1605–1620, 2005  相似文献   

17.
The melting behavior and the morphology development that runs parallel to it play central roles in the processing of polymer blends. We studied the impact of speed, melt throughput, continuous‐phase viscosity, screw configuration, and disperse‐phase content on the melting behavior and morphology development in the melting zone of a twin‐screw extruder. The polymer blend used incorporated polyamide‐6 (PA6) as its disperse phase and a high‐viscosity or low‐viscosity polypropylene as the matrix phase. The melting behavior of the polymer blend was investigated with press plates. A qualitative assessment was made of the processes, on basis of the optical impression gained from the transilluminated press plates. One key result was that the PA6 granules melted very rapidly in the polypropylene melt. We took samples over the length of the melting section to permit a quantitative assessment of the morphology. The results show a finely dispersed morphology already at the start of the melting section. This did not undergo any essential change as the blend passed through the extruder, and only a limited correlation was evident with the process parameters. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1986–2002, 2001  相似文献   

18.
利用自制的液压剖分式沟槽机筒单螺杆挤出机实验平台,研究了沟槽机筒单螺杆挤出机的熔融长度和螺杆转速的关系,实验验证了单螺杆挤出机固体输送段和熔融段机筒均开设沟槽的耦合双槽熔融理论。结果表明,与传统光滑机筒单螺杆挤出机和IKV单螺杆挤出机相比,在熔融段机筒开设沟槽的单螺杆挤出机的熔融长度较短且熔融过程比较稳定,熔融效率得到较大提高。  相似文献   

19.
The influence of extrusion parameters on the morphology of non‐reactive blends has been investigated by means of online light‐scattering measurements. A light‐scattering device was especially designed to be mounted on a twin screw extruder at different locations along the barrel. The obtained light‐scattering patterns were interpreted with respect to the variation of the processing parameters. Preliminary results show that there is little effect of the rotational speed, position along the screw and feed throughput on the morphology but a quite noticeable effect of the blend composition. These results were confirmed by SEM micrographs.  相似文献   

20.
Previous experimental studies of melting of pellets in an intermeshing counter‐rotating twin‐screw extruder have shown that melting is initiated both between the screws and at the barrel. Models are developed for melting in both those regions. The melting between the screws is initiated by frictional work on the pellets by the calendering stresses between the screws. The melting action at the barrel is induced by a barrel temperature higher than the melting point and propagated by viscous dissipation heating of the melt film produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号