首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dynamic heating rate mode of high‐resolution thermogravimetric analysis was used to study the thermal and thermal‐oxidative stability, as well as kinetics analyses, of a model liquid rubber‐modified epoxy resin, Ep/CTBN, made up of bisphenol A diglycidyl ether‐based epoxy and carboxyl‐terminated butadiene acrylonitrile rubber (CTBN). Results show that the thermal degradation of Ep/CTBN resin in nitrogen and air consists of two and three independent steps, respectively. Moreover, Ep/CTBN has a higher initial degradation temperature and higher activation energy than those of pure epoxy resin in both gases, indicating that the addition of CTBN to epoxy can improve the thermal and thermal‐oxidative stability of pristine epoxy resin. Kinetic parameters such as activation energy, reaction order, and preexponential factor of each degradation step of both Ep/CTBN and pure epoxy resins in air and nitrogen were calculated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3594–3600, 2003  相似文献   

2.
Amine‐terminated poly(arylene ether sulfone)–carboxylic‐terminated butadiene‐acrylonitrile–poly(arylene ether sulfone) (PES‐CTBN‐PES) triblock copolymers with controlled molecular weights of 15,000 (15K) or 20,000 (20K) g/mol were synthesized from amine‐terminated PES oligomer and commercial CTBN rubber (CTBN 1300x13). The copolymers were utilized to modify a diglycidyl ether of bisphenol A epoxy resin by varying the loading from 5 to 40 wt %. The epoxy resins were cured with 4,4′‐diaminodiphenylsulfone and subjected to tests for thermal properties, plane strain fracture toughness (KIC), flexural properties, and solvent resistance measurements. The fracture surfaces were analyzed with SEM to elucidate the toughening mechanism. The properties of copolymer‐toughened epoxy resins were compared to those of samples modified by PES/CTBN blends, PES oligomer, or CTBN. The PES‐CTBN‐PES copolymer (20K) showed a KIC of 2.33 MPa m0.5 at 40 wt % loading while maintaining good flexural properties and chemical resistance. However, the epoxy resin modified with a CTBN/8K PES blend (2:1) exhibited lower KIC (1.82 MPa m0.5), lower flexural properties, and poorer thermal properties and solvent resistance compared to the 20K PES‐CTBN‐PES copolymer‐toughened samples. The high fracture toughness with the PES‐CTBN‐PES copolymer is believed to be due to the ductile fracture of the continuous PES‐rich phases, as well as the cavitation of the rubber‐rich phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1556–1565, 2002; DOI 10.1002/app.10390  相似文献   

3.
Epoxy resins are considered as one of the most important class of thermosetting polymers and find extensive use in various fields. However, these materials are characterized by a relatively low toughness. In this respect, many efforts have been made to improve the toughness of cured epoxy resins. In this work, samples of epoxy resin diglycidyl ether of bisphenol‐A and fiber glass‐reinforced composite of this polymer with and without liquid carboxyl‐terminated butadiene acrylonitrile (CTBN) copolymer were prepared to assess the effect of CTBN rubber on the properties of polymeric and composite laminate specimens. The addition of CTBN into the polymeric specimens led to a decrease in the glass transition temperature, fracture stress (from 70.39 to 56.34 MPa), and tensile elasticity modulus (from about 3.51 to 2.65 GPa), accompanied by an increase in elongation (from 2.47 to 5.64%). However, the degradation temperature of the polymeric system was not modified. Infrared analysis evidenced the occurrence of chemical reaction between the two components, and scanning electron microscopy results suggested rubber particles deformation as the prevailing toughening mechanism. The rubber addition in the composite specimens, promoted an increase simultaneous in fracture stress and in elongation at fracture. The elasticity tensile modulus has not changed. This probably results from the increased deformation capacity of the matrix, which prevents its premature cracking, and better adhesion between fibers and matrix observed in the CTBN‐modified composite laminates. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

4.
CTBN‐modified epoxy resins (CMEs) with an interpenetrating‐network (IPN) structure and a nanometer‐sized morphology were prepared. Two systems of CMEs, called CNE/DDS/I‐CTBN‐B and CNE/DDS/I‐CTBN‐D, with IPN structures, were synthesized by heat‐curing a homogeneous resin, CNE/DDS/CTBN/2‐MI, obtained by mixing a carboxyl‐terminated butadiene–acrylonitrile liquid rubber (CTBN) with a solution of polyglycidyl ether of o‐cresol‐formaldehyde novolac (CNE), 4,4′‐diamino diphenyl sulfone (DDS), and 2‐methyl imidazole (2‐MI), in the presence of benzoyl peroxide and dicumyl peroxide, respectively. The IPN morphologies of the two systems of CMEs were identified by small‐angle X‐ray scattering by measuring the value of the specific interfacial surface area Ssp between the cured CNE/DDS matrix and the vulcanized CTBN. Properties such as fracture toughness, internal stress, and thermal and dynamic mechanical properties of these IPN‐structured CMEs were studied in detail, and were compared with those of a conventional CME, CNE/DDS/CTBN, obtained by dispersing CTBN particles in a crosslinked CNE/DDS matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
The effect of the elastomer structure on toughening highly crosslinked epoxy systems in a resin transfer moulding process (RTM) was investigated. Two kinds of elastomers containing carboxyl functionalized groups were used: (1) a reactive liquid elastomer based on carboxyl‐terminated butadiene‐acrylonitrile copolymer (CTBN), (2) a preformed core‐shell rubber (CSR). The introduction of CTBN rubber caused the modification in the glass transition temperature due to the miscibility in the epoxy matrix, whereas CSR particles did not. During cure, these elastomers affected the morphological, rheological and dielectric behaviour of epoxy/amine systems. A blend of 5% CTBN and 5% CSR exhibited a bimodal distribution of rubber particle sizes (analyzed by transmission electron microscopy) whereas scanning electron microscopy showed the glass fibre‐matrix cohesion in fracture surfaces. A semi‐empirical model was used (developed by Castro‐Macosko for describing chemorheological behaviour of epoxy/amine systems for the RTM process). The increase in viscosity and the reduction in ion conductivity were the two key parameters to monitor the cure process. The presence of rubber affected the rheological behaviour involving initial viscosity and gel point. The investigation of temperatures, pressures and ionic conductivities in various glass fibre layers was conducted to control the front flow filling and the cure reaction. The introduction of rubber modified the inflexion area of the cured rubber–epoxy blends by changing the cure rate. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
Carboxyl‐terminated butadiene acrylonitrile (CTBN) liquid rubber/epoxy (diglycidyl ether of bisphenol‐A: DGEBA) / diamino diphenyl methane (DDM) resins, in which CTBN was 60 wt % as the major component, were formulated to evaluate the damping and adhesive properties. In cases where acrylonitrile (AN) was 10~18 mol % as copolymerization ratio in CTBN, the blend resins showed micro‐phase separated morphologies with rubber‐rich continuous phases and epoxy‐rich dispersed phases. The composite loss factors (η) for steel laminates, which consisted of two steel plates with a resin layer in between, depended highly on the environmental temperature and the resonant frequencies. On the other hand, in the case where AN was 26 mol % in CTBN, the cured resin did not show clear micro‐phase separation, which means the components achieve good compatibility in nano‐scale. This polymer alloy had a broad glass‐transition temperature range, which resulted in the high loss factor (η > 0.1) for the steel laminates and excellent energy absorbability as the bulk resin in a broad temperature range. Also the resin indicated high adhesive strengths to aluminum substrates under both shear and peel stress modes. The high adhesive strengths of the CTBN/epoxy polymer alloy originated in the high strength and the high strain energy to failure of the bulk resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
Two different kinds of micro‐nanoconstrained damping structure units (M‐NCDSUs) were prepared by carboxyl‐terminated butadiene acrylonitrile copolymer and epoxy‐terminated butadiene acrylonitrile copolymer liquid rubbers intercalating organic montmorillonite, respectively. The prepared M‐NCDSUs were then blended with epoxy resin to obtain damping structure integration nanocomposites. The X‐ray diffraction and transmission electron microscope measurements applied for the obtained samples confirmed the good formation of M‐NCDSUs in the epoxy network. The tensile strength decreased slightly with the addition of M‐NCDSUs, whereas the damping properties measured by dynamic mechanical analysis showed a remarkable increase. Besides, the cured epoxy resin exhibited a two‐phase morphology where the spherical rubber phase dispersed uniformly in the epoxy matrix. The nanocomposites containing M‐NCDSUs showed superior comprehensive properties compared with that without the functional units. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39797.  相似文献   

8.
The effect of addition of elastomeric modifiers on the adhesive properties like lap shear strength and T‐peel strength of an addition curable, maleimide functional novolac phenolic resin (PMF), self‐cured and cocured with a novolac epoxy resin, was studied using aluminium adherends. The modifiers used were (1) two grades of carboxyl terminated butadiene acrylonitrile copolymer (CTBN) of different molecular weights, (2) a low molecular weight, epoxidized hydroxyl‐terminated polybutadiene, and (3) a high molecular weight acrylate terpolymer containing pendant epoxy functionality. The adhesive properties, when examined as a function of the varying concentrations of the additives, ranging from 10 to 30 parts per hundred parts (phr) of the resin, were found to depend on the nature of the matrix being modified as well as on the nature and concentration of the elastomer. The adhesive properties at ambient temperature of the self‐cured, highly brittle PMF resin were dramatically improved by the inclusion of all the elastomers, the increase being substantial in the case of high molecular weight CTBN. For the more rigid, less ductile, epoxy‐cured PMF system, the adhesive properties were marginally improved by the high molecular weight CTBN, whereas the other elastomers were practically ineffective. For both self‐cured and epoxy‐cured PMF systems, the inclusion of these elastomers generally decreased the high‐temperature adhesive properties, implying impairment of thermal characteristics, evidenced also from their dynamic mechanical spectra. The presence of phase‐separated elastomer particles in the modified systems has been evidenced from scanning electron micrographs. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2321–2332, 1999  相似文献   

9.
采用端羧基丁腈橡胶(CTBN)和聚酰亚胺树脂(PI)为改性剂,甲基六氢苯酐(MeHHPA)为固化剂,2,4,6-三(二甲氨基甲基)苯酚(DMP-30)为固化促进剂,对双酚A型环氧树脂(DGEBA)进行改性,研究了CTBN/PI复合改性剂对DGEBA力学性能、动态热力学性能和形态结构的影响。结果表明,CTBN/PI复合改性剂在保持弹性模量损失很小的情况下,显著提高了DGEBA的冲击强度、断裂强度和断裂伸长率;当复合改性体系中CTBN和PI添加量分别为20~30份、1.5~2.0份(质量份,下同)时,体系的综合力学性能最佳;适当引入PI增加了体系储能模量和耐热性,DGEBA的冲击断面发生了塑性变形,韧性得到了改善。  相似文献   

10.
This study investigated the influence of carboxyl‐terminated butadiene acrylonitrile (CTBN) liquid rubbers on the microcracking response of polymeric composite materials to cryogenic cycling. Matrices of carbon fiber/epoxy prepregs were modified with different concentrations of two CTBN liquid rubbers. The glass transition temperature and the interlaminar shear strength of the laminate systems were depressed as a result of the presence of CTBN in the epoxy phase. An increase in total rubber concentration with the continuous phase was found to decrease and in some cases eliminate microcracking in laminates exposed to cryogenic cycling.  相似文献   

11.
采用端羧基液体丁腈橡胶(CTBN)增韧环氧树脂,制备了双组分室温固化环氧结构胶。利用傅里叶变换红外光谱仪(FTIR)、微机控制万能材料试验机及扫描电镜(SEM)对固化过程、固化产物剪切强度及固化产物微观形态进行了表征。该胶树脂甲组分的最佳制备条件如下:环氧树脂与CTBN的质量比8∶1,反应温度200℃,保温时间2.5 h。该胶在室温下固化24 h,室温剪切强度可达29.24 MPa,耐介质性能良好,CTBN改性环氧树脂增韧效果显著。  相似文献   

12.
Cardanol‐based, novolac‐type phenolic resins were synthesized with a cardanol‐to‐formaldehyde molar ratio of 1 : 0.7 with different dicarboxylic acid catalysts, including oxalic and succinic acids. These novolac resins were epoxidized with a molar excess of epichlorohydrin at 120°C in a basic medium. The epoxidized novolac resins were separately blended with different weight ratios of carboxyl‐terminated butadiene–acrylonitrile copolymer (CTBN) ranging between 0 and 20 wt % with an interval of 5 wt %. All of the blends were cured at 120°C with a stoichiometric amount of polyamine. The formation of various products during the synthesis of the cardanol‐based novolac resin and epoxidized novolac resin and the blending of the epoxidized novolac resin with CTBN was studied by Fourier transform infrared spectroscopy analysis. Furthermore, the products were also confirmed by proton nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectroscopy analysis. The molecular weights of the prepared novolacs and their epoxidized novolac resins were determined by gel permeation chromatography analysis. The blend samples, in both cases, with 15 wt % CTBN concentrations showed the minimum cure times. These blend samples were also the most thermally stable systems. The blend morphology, studied by scanning electron microscopy analysis, was, finally, correlated with the structural and property changes in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Toughening of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin with liquid carboxyl-terminated butadiene acrylonitrile (CTBN) copolymer has been investigated. For this purpose six blend samples were prepared by mixing DGEBA with different concentrations of CTBN from 0 to 25 phr with an increment of 5 phr. The samples were cured with dicyandiamide curing agent accelerated by Monuron. The reactions between oxirane groups of DGEBA and carboxyl groups of CTBN were followed by Fourier-transform infrared (FTIR) spectroscopy. Tensile, impact, fracture toughness and dynamic mechanical analysis of neat as well as the modified epoxies have been studied to observe the effect of CTBN modification. The tensile strength of the blend systems increased by 26 % when 5 phr CTBN was added, and it remained almost unchanged up to 15 phr of CTBN. The elongation-at-break and Izod notched impact strength increased significantly, whereas tensile modulus decreased gradually upon the addition of CTBN. The maximum toughness of the prepared samples was achieved at optimum concentration of 15 phr of CTBN, whereas the fracture toughness (K IC) remained stable for all blend compositions of more than 10 phr of CTBN. The glass transition temperature (T g) of the epoxy resin significantly increased (11.3 °C) upon the inclusion of 25 phr of CTBN. Fractured surfaces of tensile test samples have been studied by scanning electron microscopic analysis. This latter test showed a two-phase morphology where the rubber particles were distributed in the epoxy resin with a tendency towards co-continuous phase upon the inclusion of 25 phr of CTBN.  相似文献   

14.
室温固化抗剥离耐温环氧胶粘剂   总被引:14,自引:5,他引:9  
研究了一种室温固化,可在120℃下使用的环氧树脂胶粘剂。通过CTBN增韧改性,获得了较高的剥离强度和剪切强度,通过加入高官能度环氧树脂和改性芳胺及催化剂,使得该体系具有一定的耐温性和可室温固化性。  相似文献   

15.
The fracture behavior of a bisphenol A diglycidylether (DGEBA) epoxy, Araldite F, modified using carboxyl‐terminated copolymer of butadiene and acrylonitrile (CTBN) rubber up to 30 wt%, is studied at various crosshead rates. Fracture toughness, KIC, measured using compact tension (CT) specimens, is significantly improved by adding rubber to the pure epoxy. Dynamic mechanical analysis (DMA) was applied to analyze dissolution behavior of the epoxy resin and rubber, and their effects on the fracture toughness and toughening mechanisms of the modified epoxies were investigated. Scanning electron microscopy (SEM) observation and DMA results show that epoxy resides in rubber‐rich domains and the structure of the rubber‐rich domains changes with variation of the rubber content. Existence of an optimum rubber content for toughening the epoxy resin is ascribed to coherent contributions from the epoxy‐residing dispersed rubber phase and the rubber‐dissolved epoxy continuous phase. No rubber cavitation in the fracture process is found, the absence of which is explained as a result of dissolution of the epoxy resin into the rubber phase domains, which has a negative effect on the improvement of fracture toughness of the materials. Plastic deformation banding at the front of precrack tip, formed as a result of stable crack propagation, is identified as the major toughening process.  相似文献   

16.
A semicrystalline polymer, isotactic poly(phenyl glycidyl ether) (i‐PPGE) was used as a modifier for epoxy resin; 1,8‐Diamino‐p‐methane (MNDA) and 4,4′‐Diamino diphenyl sulfone (DDS) were used as curing agents. In the MNDA‐cured resins, the dispersed phase were spherical particles with diameters in the range of 0.5–1.0 μm when the resin was blended with 5 phr i‐PPGE. In the DDS‐cured resins, the particle size distribution of the dispersed phase was much wider. The difference was traced back to the reactivity of the curing agent and the different regimes used for curing. Through dynamic mechanical analysis, it was found that in the MNDA‐cured systems, i‐PPGE had a lower crystallinity than in the DDS‐cured system. In spite of the remarkable difference in the morphology and microstructure of the modified resins cured with these two curing agents, the toughening effects of i‐PPGE were similar for these resins. The critical stress intensity factor (KIC) was increased by 54% and 53%, respectively, for the resins cured by DDS and by MNDA, blending with 5 phr of the toughner. i‐PPGE was comparable with the classical toughners carboxyl‐terminated butadiene‐acrylonitrile copolymers in effectiveness of toughening the epoxy resin. An advantage of i‐PPGE was that the modulus and the glass‐transition temperature of the resin were less affected. However, this modifier caused the flexural strength to decrease somewhat. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1223–1232, 2002; DOI 10.1002/app.10445  相似文献   

17.
为了研制一种适合缠绕阻尼复合材料结构件的树脂基体,采用在强度较高的环氧树脂体系中加入端羧基丁腈橡胶(CTBN)与聚氨酯作为阻尼改性剂,以提高基体的阻尼性能。研究了CTBN与聚氨酯含量对体系阻尼性能的影响,结合力学性能优选出了采用CTBN和聚氨酯混合阻尼改性剂的适合于缠绕成型的结构型树脂配方体系,组成了优化配方,优选配方的拉伸强度达到69.9 MPa,阻尼损耗因子为0.1,并且黏度适宜,满足缠绕工艺要求。  相似文献   

18.
S.C. Kunz  J.A. Sayre  R.A. Assink 《Polymer》1982,23(13):1897-1906
The morphology (dispersed phase composition, size distribution, and particle/matrix interface shapes) of epoxy resins modified with 5–15 parts by weight (pbw) of carboxyl (CTBN) and amine (ATBN) terminated butadiene acrylonitrile rubber have been characterized. The characterization techniques were transmission electron microscopy coupled with energy dispersive X-ray analysis, differential scanning calorimetry and proton and 13C nuclear magnetic resonance. ATBN modified epoxies have a diffuse-appearing interface between the dispersed rubber phase and the epoxy matrix, in contrast to the sharp boundaries of CTBN particle interfaces. Interface mixing of epoxy and rubber, hypothesized initially to explain the interface diffuseness in ATBN modified epoxy, was not found in either CTBN or ATBN modified epoxy. The difference in interface appearance is attributed to ATBN particles having highly irregular shapes compared to the nearly spherical CTBN particles. Bimodal particle size distributions are observed with both modifiers. Both rubber modifiers also produce essentially identical toughness values which do not increase with rubber content in the range 5–15 pbw despite a commensurate increase in the population of large particles.  相似文献   

19.
The morphologies of styrene (St) crosslinked divinylester resins (DVER) modified with elastomers were analyzed. The primary focus of this study was on the effect of the molecular weight of the resins, the reactivity of the elastomeric modifiers, and the temperature of curing. All of these variables have a strong influence on both the miscibility and the viscosity of the system, affecting the phase‐separation process that takes place in the unreacted and the reacting mixture. The selected liquid rubbers were carboxyl‐terminated poly(butadiene‐co‐acrylonitrile) (CTBN), a common toughening agent for epoxy resins, and an almost unreactive rubber with the DVER; and St comonomers and vinyl‐terminated poly(butadiene‐co‐acrylonitrile (VTBN), a reactive rubber. Different morphologies potentially appear in these systems: structures formed by DVER–St nodules surrounded by elastomer and spanning the whole sample; dual cocontinuous micron‐size domains formed by elastomer‐rich or resin‐rich domains; and a continuous DVER–St‐rich phase with included complex nodular domains. These microstructures can be varied by just changing the nature and concentration of the elastomer, the molecular weight of the resin, or the curing temperature. The appearance of these morphologies is discussed as a function of the above variables. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 274–283, 2003  相似文献   

20.
Block copolymers of unsaturated polyester were prepared by condensation polymerization of hydroxyl or carboxyl terminated liquid rubbers with maleic anhydride, phthalic anhydride, and propylene glycol. The condensate obtained was mixed with styrene monomer to get an unsaturated polyester resin formulation. In this study, copolymers of unsaturated polyesters with hydroxy terminated polybutadiene, carboxy terminated nitrile rubber, and hydroxy terminated natural rubber were prepared. Mechanical properties such as tensile strength, tensile modulus, elongation at break, toughness, impact strength, surface hardness, abrasion resistance, and water absorption were evaluated after the resin was cured in appropriate molds for comparison with the control resin. The fracture toughness and impact resistance of CTBN‐modified unsaturated polyester show substantial improvement by this copolymerization without seriously affecting any other property. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1956–1964, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号