首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acyclic molecule squalene ( 1 ) is cyclized into 6,6,6,6,5‐fused pentacyclic hopene ( 2 ) and hopanol ( 3 ; ca. 5:1) through the action of Alicyclobacillus acidocaldarius squalene‐hopene cyclase (AaSHC). The polycyclization reaction proceeds with regio‐ and stereochemical specificity under precise enzymatic control. This pentacyclic hopane skeleton is generated by folding 1 into an all‐chair conformation. The Ala306 residue in AaSHC is conserved in known squalene‐hopene cyclases (SHCs); however, increasing the steric bulk (A306T and A306V) led to the accumulation of 6,6,6,5‐fused tetracyclic scaffolds possessing 20R stereochemistry in high yield (94 % for A306V). The production of the 20R configuration indicated that 1 had been folded in a chair‐chair‐chair‐boat conformation; in contrast, the normal chair‐chair‐chair‐chair conformation affords the tetracycle with 20S stereochemistry, but the yield produced by the A306V mutant was very low (6 %). Consequently, bulk at position 306 significantly affects the stereochemical fate during the polycyclization reaction. The SHC also accepts (3R) and (3S)‐2,3‐oxidosqualenes (OXSQs) to generate 3α,β‐hydroxyhopenes and 3α,β‐hydroxyhopanols through polycyclization initiated at the epoxide ring. However, the Val and Thr mutants generated epoxydammarane scaffolds from (3R)‐OXSQ; this indicated that the polycyclization cascade started in these instances at the terminal double bond position. This work is the first to report the polycyclization of oxidosqualene starting at the terminal double bond.  相似文献   

2.
Diterpenoids are usually found in plants and fungi, but are rare in bacteria. We have previously reported new diterpenes, named tuberculosinol and isotuberculosinol, which are generated from the Mycobacterium tuberculosis gene products Rv3377c and Rv3378c. No homologous gene was found at that time, but we recently found highly homologous proteins in the Herpetosiphon aurantiacus ATCC 23779 genome. Haur_2145 was a class II diterpene cyclase responsible for the conversion of geranylgeranyl diphosphate into kolavenyl diphosphate. Haur_2146, homologous to Rv3378c, synthesized (+)‐kolavelool through the nucleophilic addition of a water molecule to the incipient cation formed after the diphosphate moiety was released. Haur_2147 afforded (+)‐O‐methylkolavelool from (+)‐kolavelool, so this enzyme was an O‐methyltransferase. This new diterpene was indeed detected in H. aurantiacus cells. This is the first report of the identification of a (+)‐O‐methylkolavelool biosynthetic gene cluster.  相似文献   

3.
Abe  Ikuro  Prestwich  Glenn D. 《Lipids》1995,30(3):231-234
Active site mapping of rat liver oxidosqualene cyclase (OSC), a 78 kDa membrane-bound enzyme, was carried out using the mechanism-based irreversible inhibitor, [3H]29-methylidene-2,3-oxidosqualene. The amino acid sequence of the radiolabeled CNBr peptide fragment showed unexpectedly high similarity to the yeast OSC, plant OSC, and bacterial squalene cyclases. Further, radio analysis established that the two adjacent Asp residues in the highly conserved region (Asp-Asp-Thr-Ala-Glu-Ala, or DDTAEA) were equally labeled by the irreversible inhibitor. This result provided the first information on the structural details of the active site of OSC, and showed for the first time the ancient lineage of this vertebrate enzyme to ancestral eukaryotic and prokaryotic cyclases. Interestingly, the covalently-modified DDXX(D/E) sequence of rat liver OSC showed surprising similarity to the putative allylic diphosphate binding site sequence of other terpene cyclases and prenyl transferases. The Asp-rich motif may act as a point charge to stabilize incipient cationic charge. Based on a paper presented at the Symposium on the “Regulation of Biosynthesis and Function of Isopentenoids,” Atlanta, Georgia, May 1994.  相似文献   

4.
Nonpathogenic Mycobacterium species produce rare cyclic C35 terpenes that are biosynthesized by cyclization of Z‐type C35 polyprenyl diphosphate. To provide deeper insight into the biosynthesis of C35 terpenes, we carried out functional analyses of three Z‐prenyltransferase homologues in M. vanbaalenii identified by genomic analysis. Mvan_3822, a novel bifunctional Z‐prenyltransferase, biosynthesizes C35‐heptaprenyl diphosphate as a main product from (E,E)‐farnesyl diphosphate (E,E‐FPP) and (E,E,E)‐geranylgeranyl diphosphate (E,E,E‐GGPP), but produces a C50‐decaprenyl diphosphate from geranyl diphosphate. Mvan_1705 is a novel Z,E,E‐GGPP synthase. In addition, novel cyclic C35 terpenes, (14E)‐ and (14Z)‐dehydroheptaprenylcycline, were identified as minor metabolites in nonpathogenic Mycobacterium cells. C35 terpenes could be biosynthesized by two routes, in which E and Z geometric isomers of heptaprenyl diphosphate are produced from E,E‐FPP and E,E,E‐GGPP, and the prenylreductase responsible for the biosynthesis of C35 terpenes could reduce both E and Z prenyl residues.  相似文献   

5.
The enantiomers of the potent σ1 ligand fluspidine ( 1 ) were prepared by using chiral preparative HPLC. Synthesis of racemic tosylate 2 and subsequent separation of enantiomers yielded (R)‐ 2 and (S)‐ 2 in excellent enantiomeric purities. The fluspidine enantiomers (R)‐ 1 and (S)‐ 1 were synthesized from (R)‐ 2 and (S)‐ 2 by nucleophilic substitution with tetra‐n‐butylammonium fluoride, affording (R)‐ 1 with 99.6 % ee and (S)‐ 1 with 96.4 % ee. Tosylates (R)‐ 2 and (S)‐ 2 can also serve as precursors for the radiosynthesis of enantiomerically pure radiotracers [18F](R)‐ 1 and [18F](S)‐ 1 . The absolute configuration of the pure enantiomers was elucidated by comparison of their CD spectra with a calculated CD spectrum of a simplified model compound. In receptor binding studies, both enantiomers displayed very high σ1 receptor affinity and selectivity against the σ2 receptor. (R)‐Fluspidine ((R)‐ 1 ) is the eutomer, with a Ki value of 0.57 nM and a eudysmic ratio of 4. Incubation of (R)‐ 1 and (S)‐ 1 with rat liver microsomes led to the identification of seven and eight metabolites, respectively. Although the S‐configured enantiomer formed additional metabolite (S)‐ 1‐3 , it is metabolically more stable than (R)‐ 1 .  相似文献   

6.
Comprehensive functional analyses of E-isoprenyl diphosphate synthases (E-IDSs) from nonpathogenic Mycobacterium vanbaalenii have been performed. Mv0992 and Mv1577 represent a nonaprenyl diphosphate (E-C45) synthase and a geranylgeranyl diphosphate (E-C20) synthase, respectively. Although Mv3536 was identified as an E-C20 synthase using a single enzyme, co-incubation of Mv3536 and Z-IDSs (Mv4662 and Mv3822) strongly suggested it releases an intermediate geranyl diphosphate (E-C10) during a continuous condensation reaction. Mv0992 and Mv3536 functions differed from those of the previously reported pathogenic Mycobacterium tuberculosis homologues Rv0562 and Rv2173, respectively. Re-analysis of Rv0562 and Rv2173 demonstrated that their functions were similar to those of Mv0992 and Mv3536 (Rv0562: E-C45 synthase; Rv2173: E-C10–15 synthase). The newly proposed functions of Rv0562 and Rv2173 would be in the biosynthesis of menaquinone and glycosyl carrier lipids essential for growth. Furthermore, a reduced allylic diphosphate could be used as the Z-IDS of the Mv3822 substrate, thereby introducing a potentially novel pathway of cyclic sesquarterpene biosynthesis.  相似文献   

7.
Various vinyl sulfide and ketene dithioacetal derivatives of truncated 2,3-oxidosqualene were developed. These compounds, having the reactive functions at positions C-2, C-15 and C-19 of the squalene skeleton, were studied as inhibitors of pig liver and Saccharomyces cerevisiae oxidosqualene cyclases (OSC) (EC 5.4.99.7) and of Alicyclobacillus acidocaldarius squalene hopene cyclase (SHC) (EC 5.4.99.-). They contain one or two sulfur atoms in α-skeletal position to carbons considered to be cationic during enzymatic cyclization of the substrate and should strongly interact with enzyme nucleophiles of the active site. Most of the new compounds are inhibitors of the OSC and of SHC, with various degrees of selectivity. The methylthiovinyl derivative, having the reactive group at position 19, was the most potent and selective inhibitor of the series toward S. cerevisiae OSC, with a concentration inhibiting 50% of the activity of 50 nM, while toward the animal enzyme it was 20 times less potent. These results could offer new insight for the design of antifungal drugs.  相似文献   

8.
Y257 of Oryza sativa parkeol synthase (OsOSC2) corresponds to H234 of Saccharomyces cerevisiae lanosterol cyclase (ScLAS), which is believed to be responsible for the final deprotonation reaction. An Ala mutant afforded nine tetracyclic skeletons as the main products; they consisted of protostadien ol scaffolds with both 17R and 17S configurations and both 20R and 20S configurations, as well as a pair of 20R- and 20S-configured parkeols. The production of 20R- and 20S-configured tetracycles (59:40 ratio) through the action of the Y257A mutant indicated that the substrate folding had been altered from a chair–boat–chair–chair (a normal folding pattern) to a chair–boat–chair–boat structure (an unusual folding pattern). Other mutants with different steric bulks also yielded both 20R- and 20S-configured tetracycles. Thus, the primary function of Y257 appears to be to impose a normal chair structure at the D-ring site through having appropriate steric bulk. In contrast, mutations at H234 of ScLAS were reported to cause no conformational changes. The OsOSC2 Phe mutant also yielded 20R- and 20S-configured parkeols (25:33 ratio), thus suggesting that the OH group of Y257 can form hydrogen bonds with other amino acids to force a chair conformation at the D-ring site, and this variant also gave 20R- and 20S-configured parkeols in a high yield (60 %). Y257 is unlikely to act as a base to abstract H-11 and stabilize the transient cation through cation–π interactions. Thus, the catalytic roles of Y257 are significantly different from those of H234 of ScLAS.  相似文献   

9.
Thiamine diphosphate‐dependent enzymes catalyze the formation of C?C bonds, thereby generating chiral secondary or tertiary alcohols. By the use of vibrational circular dichroism (VCD) spectroscopy we studied the stereoselectivity of carboligations catalyzed by YerE, a carbohydrate‐modifying enzyme from Yersinia pseudotuberculosis. Conversion of the non‐physiological substrate (R)‐3‐methylcyclohexanone led to an R,R‐configured tertiary alcohol (diastereomeric ratio (dr) >99:1), whereas the corresponding reaction with the S enantiomer gave the S,S‐configured product (dr>99:1). This suggests that YerE‐catalyzed carboligations can undergo either an R‐ or an S‐specific pathway. We show that, in this case, the high stereoselectivity of the YerE‐catalyzed reaction depends on the substrate's preference to acquire a low‐energy conformation.  相似文献   

10.
Cross‐dehydrocoupling reactions of (R)‐methyl(1‐naphthyl)phenylsilane (>99%ee) with (S)‐methyl(1‐naphthyl)phenylsilanol (>99% ee) proceeded with 82–99% retention of configuration of chiral silicon centres in the presence of various Rh‐catalysts. Cross‐dehydrocoupling polymerization of 1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxanediol with 1,3‐dihydro‐1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxane gave poly(methylphenylsiloxane) of moderate molecular weight in toluene at 60 °C in the presence of [RhCl(cod)]2 (5.0 mol%) and triethylamine (1.0 equivalent). Assignment of the triad signals of the resulting polymer was made by 1H NMR spectroscopy of the methyl proton (I = 0.04, H = 0.09 and S = 0.14 ppm) and 13C NMR spectroscopy of the ipso carbon of the phenyl group (S = 136.7, H = 136.9, and I = 137.1 ppm). Although the reaction of optically pure (S,S)‐1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxanediol with 1,3‐dihydro‐1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxane [(S,S):(S,R):(R,R)] = 84:16:0] gave a poly(methylphenylsiloxane) of rather low molecular weight, its triad tacticity was found to be rich in syndiotacticity (S:H:I = 60:32:8) by 13C NMR spectroscopy. © 2001 Society of Chemical Industry  相似文献   

11.
Isopentenyl diphosphate isomerase (IDI) is a key enzyme in the isoprenoid biosynthetic pathway and is required for all organisms that synthesize isoprenoid metabolites from mevalonate. Type 1 IDI (IDI‐1) is a metalloprotein that is found in eukaryotes, whereas the type 2 isoform (IDI‐2) is a flavoenzyme found in bacteria that is completely absent from human. IDI‐2 from the pathogenic bacterium Streptococcus pneumoniae was recombinantly expressed in Escherichia coli. Steady‐state kinetic studies of the enzyme indicated that FMNH2 (KM =0.3 μM ) bound before isopentenyl diphosphate (KM =40 μM ) in an ordered binding mechanism. An X‐ray crystal structure at 1.4 Å resolution was obtained for the holoenzyme in the closed conformation with a reduced flavin cofactor and two sulfate ions in the active site. These results helped to further approach the enzymatic mechanism of IDI‐2 and, thus, open new possibilities for the rational design of antibacterial compounds against sequence‐similar and structure‐related pathogens such as Enterococcus faecalis or Staphylococcus aureus.  相似文献   

12.
Isoprenoids form the largest family of compounds found in nature. Isoprenoids are often attached to other moieties such as aromatic compounds, indoles/tryptophan, and flavonoids. These reactions are catalyzed by three phylogenetically distinct prenyltransferases: soluble aromatic prenyltransferases identified mainly in actinobacteria, soluble indole prenyltransferases mostly in fungi, and membrane‐bound prenyltransferases in various organisms. Fusicoccin A (FC A) is a diterpene glycoside produced by the plant‐pathogenic fungus Phomopsis amygdali and has a unique O‐prenylated glucose moiety. In this study, we identified for the first time, from a genome database of P. amygdali, a gene (papt) encoding a prenyltransferase that reversibly transfers dimethylallyl diphosphate (DMAPP) to the 6′‐hydroxy group of the glucose moiety of FC A to yield an O‐prenylated sugar. An in vitro assay with a recombinant enzyme was also developed. Detailed analyses with recombinant PAPT showed that the enzyme is likely to be a monomer and requires no divalent cations. The optimum pH and temperature were 8.0 and 50 °C, respectively. Km values were calculated as 0.49±0.037 μM for FC P (a plausible intermediate of FC A biosynthesis) and 8.3±0.63 μM for DMAPP, with a kcat of 55.3±3.3×10?3 s. The enzyme did not act on representative substrates of the above‐mentioned three types of prenyltransferase, but showed a weak transfer activity of geranyl diphosphate to FC P.  相似文献   

13.
Endo-1,4-β-xylanase (EC 3.2.1.8) is the enzyme from Ruminococcus albus 8 (R. albus 8) (Xyn10A), and catalyzes the degradation of arabinoxylan, which is a major cell wall non-starch polysaccharide of cereals. The crystallographic structure of Xyn10A is still unknown. For this reason, we report a computer-assisted homology study conducted to build its three-dimensional structure based on the known sequence of amino acids of this enzyme. In this study, the best similarity was found with the Clostridium thermocellum (C. thermocellum) N-terminal endo-1,4-β-d-xylanase 10 b. Following the 100 ns molecular dynamics (MD) simulation, a reliable model was obtained for further studies. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) methods were used for the substrate xylotetraose having the reactive sugar, which was bound in the −1 subsite of Xyn10A in the 4C1 (chair) and 2SO (skew boat) ground state conformations. According to the simulations and free energy analysis, Xyn10A binds the substrate with the −1 sugar in the 2SO conformation 39.27 kcal·mol−1 tighter than the substrate with the sugar in the 4C1 conformation. According to the Xyn10A-2SO Xylotetraose (X4(sb) interaction energies, the most important subsite for the substrate binding is subsite −1. The results of this study indicate that the substrate is bound in a skew boat conformation with Xyn10A and the −1 sugar subsite proceeds from the 4C1 conformation through 2SO to the transition state. MM-PBSA free energy analysis indicates that Asn187 and Trp344 in subsite −1 may an important residue for substrate binding. Our findings provide fundamental knowledge that may contribute to further enhancement of enzyme performance through molecular engineering.  相似文献   

14.
Nine new cerebrosides 1a–d , 2a , 2b , 3a–c were found in the extract of a Far‐Eastern glass sponge Aulosaccus sp. (class Hexactinellida). These β‐d ‐glucopyranosyl‐(1 → 1)‐ceramides contain sphingoid bases (2S,3S,4R,11Z)‐2‐aminoeicos‐11‐ene‐1,3,4‐triol (in 1a – d ), (2S,3S,4R,13Z)‐2‐aminoeicos‐13‐ene‐1,3,4‐triol (in 2a , b ) and (2S,3S,4R,13S*,14R*)‐2‐amino‐13,14‐methylene‐eicosane‐1,3,4‐triol (in 3a – c ), which are N‐acylated by (2R,15Z)‐2‐hydroxydocos‐15‐enoic (in 1a , 2a , 3a ), (2R,16Z)‐2‐hydroxytricos‐16‐enoic (in 1b , 2b , 3b ), (2R,17Z)‐2‐hydroxytetracos‐17‐enoic (in 1d ) and (2R)‐2‐hydroxydocosanoic (in 1c , 3c ) acids. The monoenoic and cyclopropane‐containing sphingoid bases of compounds 1a–d , 2a , 2b , 3a–c have not been found previously in any sphingolipids. The structures of the cerebrosides were elucidated on the basis of 1H‐, 13C‐NMR spectroscopy, mass spectrometry, optical rotation data and chemical transformations. A simplified method for the assignment of the absolute configuration of 2‐hydroxy fatty acids by GC analysis of their (2R)‐ and (2S)‐oct‐2‐yl esters was proposed.  相似文献   

15.
Terpene synthases catalyse the first step in the conversion of prenyl diphosphates to terpenoids. They act as templates for their substrates to generate a reactive conformation, from which a Mg2+‐dependent reaction creates a carbocation–PPi ion pair that undergoes a series of rearrangements and (de)protonations to give the final terpene product. This tight conformational control was exploited for the (R)‐germacrene A synthase– and germacradien‐4‐ol synthase–catalysed formation of a medium‐sized cyclic terpenoid ether from substrates containing nucleophilic functional groups. Farnesyl diphosphate analogues with a 10,11‐epoxide or an allylic alcohol were efficiently converted to a 11‐membered cyclic terpenoid ether that was characterised by HRMS and NMR spectroscopic analyses. Further experiments showed that other sesquiterpene synthases, including aristolochene synthase, δ‐cadinene synthase and amorphadiene synthase, yielded this novel terpenoid from the same substrate analogues. This work illustrates the potential of terpene synthases for the efficient generation of structurally and functionally novel medium‐sized terpene ethers.  相似文献   

16.
Gene‐inactivation experiments have indicated that the putative prenyltransferase XptB from Aspergillus nidulans was likely to be responsible for the prenylation of 1,7‐dihydroxy‐6‐methyl‐8‐hydroxymethylxanthone. Recently, it was suggested that this enzyme might also accept as substrate the benzophenone arugosin H, which is assumed to be a precursor of prenylated xanthones. In this study, five benzophenones and ten xanthones were incubated with purified recombinant XptB in the presence of dimethylallyl diphosphate (DMAPP). XptB accepted four xanthones as substrates, including the proposed natural substrate, and catalysed regiospecific O‐prenylations at C‐7 of the xanthone core. Km values in the range of 0.081–1.1 mM and turnover numbers (kcat) between 0.02 and 0.5 s?1 were determined for the accepted xanthones. The kinetic parameters for DMAPP were found to be 0.024 mM (Km) and 0.13 s?1 (kcat). Arugosin H was not accepted by XptB under the tested conditions. XptB was relatively specific towards its prenyl donor and did not accept geranyl or farnesyl diphosphate as substrate. Mn2+ and Co2+ strongly enhanced XptB activity (up to eightfold); this has not been reported before for prenyltransferases of the DMATS superfamily.  相似文献   

17.
Heparin is a highly sulfated glycosaminoglycan (GAG) of natural origin used as an anticoagulant and antithrombotic drug. These properties are principally based on the binding and activation of antithrombin (AT) through the pentasaccharide sequence GlcNAc/NS,6S‐GlcA‐GlcNS,3,6S‐IdoA2S‐GlcNS,6S (AGA*IA). Literature data show that the population of the 2S0 ring conformation of the 2‐O‐sulfo‐α‐l ‐iduronic acid (IdoA2S) motif correlates with the affinity and activation of AT. It was recently demonstrated that two synthetic AGA*IA‐containing hexasaccharides (one G unit added at the reducing end), differing in the degree of sulfation of the IdoA unit, show comparable affinity and ability to activate AT, despite a different conformation of the IdoA residue. In this paper, the binding of these two glycans to AT was studied by isothermal titration microcalorimetry (ITC), transferred (tr‐) NOESY, saturation transfer difference (STD) NMR spectroscopy and molecular dynamics (MD) simulations. Results indicated that both the IdoA2S and the IdoA units assume a 2S0 conformation when bound with AT, and so present a common binding epitope for the two glycans, centred on the AGA*IA sequence.  相似文献   

18.
To determine the eutomers of potent GluN2B‐selective N‐methyl‐d ‐aspartate (NMDA) receptor antagonists with a 3‐benzazepine scaffold, 7‐benzyloxy‐3‐(4‐phenylbutyl)‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepin‐1‐ols (S)‐ 2 and (R)‐ 2 were separated by chiral HPLC. Hydrogenolysis and subsequent methylation of the enantiomerically pure benzyl ethers of (S)‐ 2 and (R)‐ 2 provided the enantiomeric phenols (S)‐ 3 and (R)‐ 3 [3‐(4‐phenylbutyl)‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine‐1,7‐diol] and methyl ethers (S)‐ 4 and (R)‐ 4 . All enantiomers were obtained with high enantiomeric purity (≥99.7 % ee). The absolute configurations were determined by CD spectroscopy. R‐configured enantiomers turned out to be the eutomers in receptor binding studies and two‐electrode voltage clamp experiments. The most promising ligand of this compound series is the R‐configured phenol (R)‐ 3 , displaying high GluN2B affinity (Ki=30 nm ), high inhibition of ion flux (IC50=61 nm ), and high cytoprotective activity (IC50=93 nm ). Whereas the eudismic ratio in the receptor binding assay is 25, the eudismic ratio in the electrophysiological experiment is 3.  相似文献   

19.
The diterpene synthase clerodienyl diphosphate synthase 1 (PvCPS1) from the crop plant switchgrass (Panicum virgatum) stereoselectively converts (E,E,E)-geranylgeranyl diphosphate (GGPP) into the clerodane natural product, cis-trans-clerodienyl diphosphate (CLPP, 1 ). Structure-guided point mutations of PvCPS1 redirected product stereoselectivity toward the formation of a rare cis-clerodane diastereomer, cis-cis-CLPP ( 2 ). Additionally, an alternative cis-clerodane diastereomer, (5S,8S,9R,10R)-13Z-CLPP ( 3 ), was produced when treating PvCPS1 and select variants thereof with the cis-prenyl substrate (Z,Z,Z)-nerylneryl diphosphate (NNPP). These results support the hypothesis that substrate configuration and minor active-site alterations impact precatalysis substrate folding in the stereoselective biosynthesis of clerodane diterpenoid scaffolds, and can be employed to provide enzymatic access to a broader range of bioactive clerodane natural products.  相似文献   

20.
The active conformation of a family of metabotropic glutamate receptor subtype 4 (mGlu4) positive allosteric modulators (PAMs) with the cyclohexane 1,2‐dicarboxylic scaffold present in cis‐2‐(3,5‐dichlorophenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041) was investigated by testing structurally similar six‐membered ring compounds that have a locked conformation. The norbornane and cyclohexane molecules designed as mGlu4 conformational probes and the enantiomers of the trans diastereomer were computationally characterized and tested in mGlu4 pharmacological assays. The results support a VU0155041 active conformation, with the chair cyclohexane having the aromatic amide substituent in an axial position and the carboxylate in an equatorial position. Moreover, the receptor displays enantiomeric discrimination of the chiral PAMs. The constructed pharmacophore characterized a highly constrained mGlu4 allosteric binding site, thus providing a step forward in structure‐based drug design for mGlu4 PAMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号