首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, DAPK‐related apoptosis‐inducing protein kinase 2 (DRAK2) has emerged as a promising target for the treatment of a variety of autoimmune diseases and for the prevention of graft rejection after organ transplantation. However, medicinal chemistry optimization campaigns for the discovery of novel small‐molecule inhibitors of DRAK2 have not yet been published. Screening of a proprietary compound library led to the discovery of a benzothiophene analogue that displays an affinity constant (Kd) value of 0.25 μM . Variation of the core scaffold and of the substitution pattern afforded a series of 5‐arylthieno[2,3‐b]pyridines with strong binding affinity (Kd=0.008 μM for the most potent representative). These compounds also show promising activity in a functional biochemical DRAK2 enzyme assay, with an IC50 value of 0.029 μM for the most potent congener. Selectivity profiling of the most potent compounds revealed that they lack selectivity within the DAPK family of kinases. However, one of the less potent analogues is a selective ligand for DRAK2 and can be used as starting point for the synthesis of selective and potent DRAK2 inhibitors.  相似文献   

2.
Previous studies by our research group have been concerned with the design of selective inhibitors of heme oxygenases (HO‐1 and HO‐2). The majority of these were based on a four‐carbon linkage of an azole, usually an imidazole, and an aromatic moiety. In the present study, we designed and synthesized a series of inhibition candidates containing a shorter linkage between these groups, specifically, a series of 1‐aryl‐2‐(1H‐imidazol‐1‐yl/1H‐1,2,4‐triazol‐1‐yl)ethanones and their derivatives. As regards HO‐1 inhibition, the aromatic moieties yielding best results were found to be halogen‐substituted residues such as 3‐bromophenyl, 4‐bromophenyl, and 3,4‐dichlorophenyl, or hydrocarbon residues such as 2‐naphthyl, 4‐biphenyl, 4‐benzylphenyl, and 4‐(2‐phenethyl)phenyl. Among the imidazole‐ketones, five ( 36 – 39 , and 44 ) were found to be very potent (IC50<5 μM ) toward both isozymes. Relative to the imidazole‐ketones, the series of corresponding triazole‐ketones showed four compounds ( 54 , 55 , 61 , and 62 ) having a selectivity index >50 in favor of HO‐1. In the case of the azole‐dioxolanes, two of them ( 80 and 85 ), each possessing a 2‐naphthyl moiety, were found to be particularly potent and selective HO‐1 inhibitors. Three non‐carbonyl analogues ( 87 , 89 , and 91 ) of 1‐(4‐chlorophenyl)‐2‐(1H‐imidazol‐1‐yl)ethanone were found to be good inhibitors of HO‐1. For the first time in our studies, two azole‐based inhibitors ( 37 and 39 ) were found to exhibit a modest selectivity index in favor of HO‐2. The present study has revealed additional candidates based on inhibition of heme oxygenases for potentially useful pharmacological and therapeutic applications.  相似文献   

3.
New fluorine‐containing, triphenylamine‐based diamine and dicarboxylic acid monomers, namely 3,5‐bis(trifluoromethyl)‐4′,4″‐diaminotriphenylamine and 3,5‐bis(trifluoromethyl)‐4′,4″‐dicarboxytriphenylamine, were synthesized and polymerized with commercially available aromatic dicarboxylic acids and diamines, respectively, leading to two series of aromatic polyamides, 5a–h and 7a–e . Most of the polyamides were amorphous and readily soluble in many common organic solvents and could be solution‐cast into transparent, flexible and strong films with good mechanical properties. The polyamides had useful levels of thermal stability associated with high glass transition temperatures of 273–305 °C and 10% weight‐loss temperatures in excess of 500 °C. Cyclic voltammograms of films of polymers 5a–h on indium–tin oxide‐coated glass substrates exhibited reversible oxidation redox couples with E1/2 around 1.15 V versus Ag/AgCl in tetrabutylammonium perchlorate/acetonitrile solution, accompanied by a color change from colorless neutral state to reddish brown oxidized state. The 7 series polymers displayed a higher oxidation potential and less electrochemical stability as compared to the 5 series analogues. © 2017 Society of Chemical Industry  相似文献   

4.
4‐(4′‐Aminophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( 1 ) was reacted with 1,8‐naphthalic anhydride ( 2 ) in a mixture of acetic acid and pyridine (3 : 2) under refluxing temperature and gave 4‐(4′‐N‐1,8‐naphthalimidophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( NIPTD ) ( 3 ) in high yield and purity. The compound NIPTD was reacted with excess n‐propylisocyanate in N,N‐dimethylacetamide solution and gave 1‐(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐triazolidine‐3,5‐dione ( 4 ) and 1,2‐bis(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐ triazolidine‐3,5‐dione ( 5 ) as model compounds. Solution polycondensation reactions of monomer 3 with hexamethylene diisocyanate ( HMDI ), isophorone diisocyanate ( IPDI ), and tolylene‐2,4‐diisocyanate ( TDI ) were performed under microwave irradiation and conventional solution polymerization techniques in different solvents and in the presence of different catalysts, which led to the formation of novel aliphatic‐aromatic polyureas. The polycondensation proceeded rapidly, compared with conventional solution polycondensation, and was almost completed within 8 min. These novel polyureas have inherent viscosities in a range of 0.06–0.20 dL g?1 in conc. H2SO4 or DMF at 25°C. Some structural characterization and physical properties of these novel polymers are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2861–2869, 2003  相似文献   

5.
A series of 3‐hydroxy‐3‐phenacyloxindole analogues of isatin were designed, synthesized, and evaluated in vitro for their inhibitory activity toward monoamine oxidase (MAO) A and B. Most of the synthesized compounds proved to be potent and selective inhibitors of MAO‐A rather than MAO‐B. 1‐Benzyl‐3‐hydroxy‐3‐(4′‐hydroxyphenacyl)oxindole (compound 18 ) showed the highest MAO‐A inhibitory activity (IC50: 0.009±0.001 μm , Ki: 3.69±0.003 nm ) and good selectivity (selectivity index: 60.44). Kinetic studies revealed that compounds 18 and 16 (1‐benzyl‐3‐hydroxy‐3‐(4′‐bromophenacyl)oxindole) exhibit competitive inhibition against MAO‐A and MAO‐B, respectively. Structure–activity relationship studies suggested that the 3‐hydroxy group is an essential feature for these analogues to exhibit potent MAO‐A inhibitory activity. Computational studies revealed the possible molecular interactions between the inhibitors and MAO isozymes. The computational data obtained are congruent with experimental results. Further studies on the lead inhibitors, including co‐crystallization of inhibitor–MAO complexes and in vivo evaluations, are essential for their development as potential therapeutic agents for the treatment of MAO‐associated neurological disorders.  相似文献   

6.
A series of new bis triazole Schiff base derivatives (4) were prepared in good yields by treatment of 4‐amino‐3,5‐diphenyl‐4H‐1,2,4‐triazole (3) with bisaldehydes (1). Schiff bases (4) were reduced with NaBH4 to afford the corresponding bisaminotriazoles (5). All the new compounds were characterized by IR, 1H NMR and 13C NMR spectral data. Their overall extraction (log Kex) constants for 1 : 1 (M : L) complexes and CHCl3/H2O systems were determined at 25 ± 0.1°C to investigate the relationship between structure and selectivity toward various metal cations. The extraction equilibrium constants were estimated using CHCl3/H2O membrane transfer with inductively coupled plasma‐atomic emission spectroscopy spectroscopy. The stability sequence of the triazole derivatives in CHCl3 for the metal cations was exhibited a characteristic preference order of extractability to metal ions [Fe(III) > Cu(II) > Pb(II) > Co(II) > Ni(II) > Mn(II) > Zn(II) > Mg(II) > Ca(II)]. The compounds were tested for anti‐microbial activity applying agar diffusion technique for 11 bacteria. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
A series of imidazo[2,1‐b][1,3,4]thiadiazole‐linked oxindoles composed of an A, B, C and D ring system were synthesized and investigated for anti‐proliferative activity in various human cancer cell lines; test compounds were variously substituted at rings C and D. Among them, compounds 7 ((E)‐5‐fluoro‐3‐((6‐p‐tolyl‐2‐(3,4,5‐trimethoxyphenyl)‐imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one), 11 ((E)‐3‐((6‐p‐tolyl‐2‐(3,4,5‐trimethoxyphenyl)imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one), and 15 ((E)‐6‐chloro‐3‐((6‐phenyl‐2‐(3,4,5‐trimethoxyphenyl)imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one) exhibited potent anti‐proliferative activity. Treatment with these three compounds resulted in accumulation of cells in G2/M phase, inhibition of tubulin assembly, and increased cyclin‐B1 protein levels. Compound 7 displayed potent cytotoxicity, with an IC50 range of 1.1–1.6 μM , and inhibited tubulin polymerization with an IC50 value (0.15 μM ) lower than that of combretastatin A‐4 (1.16 μM ). Docking studies reveal that compounds 7 and 11 bind with αAsn101, βThr179, and βCys241 in the colchicine binding site of tubulin.  相似文献   

8.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

9.
The design and synthesis of a series of bicyclic ring containing dual aromatase–sulfatase inhibitors (DASIs) based on the aromatase inhibitor (AI) 4‐[(4‐bromobenzyl)(4H‐1,2,4‐triazol‐4‐yl)amino]benzonitrile are reported. Biological evaluation with JEG‐3 cells revealed structure–activity relationships. The X‐ray crystal structure of sulfamate 23 was determined, and selected compounds were docked into the aromatase and steroid sulfatase (STS) crystal structures. In the sulfamate‐containing series, compounds containing a naphthalene ring are both the most potent AI ( 39 , IC50 AROM=0.25 nM ) and the best STS inhibitor ( 31 , IC50 STS=26 nM ). The most promising DASI is 39 (IC50 AROM=0.25 nM , IC50 STS=205 nM ), and this was evaluated orally in vivo at 10 mg kg?1, showing potent inhibition of aromatase (93 %) and STS (93 %) after 3 h. Potent aromatase and STS inhibition can thus be achieved with a DASI containing a bicyclic ring system; development of such a DASI could provide an attractive new option for the treatment of hormone‐dependent breast cancer.  相似文献   

10.
A series of bioisosteric N1‐ and N2‐substituted 5‐(piperidin‐4‐yl)‐3‐hydroxypyrazole analogues of the partial GABAAR agonists 4‐PIOL and 4‐PHP have been designed, synthesized, and characterized pharmacologically. The unsubstituted 3‐hydroxypyrazole analogue of 4‐PIOL ( 2 a ; IC50~300 μM ) is a weak antagonist at the α1β2γ2 GABAAR, whereas substituting the N1‐ or N2‐position with alkyl or aryl substituents resulted in antagonists with binding affinities in the high nanomolar to low micromolar range at native rat GABAARs. Docking studies using a α1β2γ2 GABAAR homology model along with the obtained SAR indicate that the N1‐substituted analogues of 4‐PIOL and 4‐PHP, 2 a – k , and previously reported 3‐substituted 4‐PHP analogues share a common binding mode to the orthosteric binding site in the receptor. Interestingly, the core scaffold of the N2‐substituted analogues of 4‐PIOL and 4‐PHP, 3 b – k , are suggested to flip 180° thereby adapting to the binding pocket and addressing a cavity situated above the core scaffold.  相似文献   

11.
Through our focused effort to discover new and effective agents against toxoplasmosis, a structure‐based drug design approach was used to develop a series of potent inhibitors of the enoyl‐acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4′ of the well‐known ENR inhibitor triclosan afforded a series of 29 new analogues. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16 a and 16 c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against recombinant TgENR were found to be 43 and 26 nM , respectively. Additionally, 11 other analogues in this series had IC50 values ranging from 17 to 130 nM in the enzyme‐based assay. With respect to their excellent in vitro activity as well as improved drug‐like properties, the lead compounds 16 a and 16 c are deemed to be excellent starting points for the development of new medicines to effectively treat Toxoplasma gondii infections.  相似文献   

12.
Mur ligases participate in the intracellular path of bacterial peptidoglycan biosynthesis and constitute attractive, although so far underexploited, targets for antibacterial drug discovery. A series of hydroxy‐substituted 5‐benzylidenethiazolidin‐4‐ones were synthesized and tested as inhibitors of Mur ligases. The most potent compound 5 a was active against MurD–F with IC50 values between 2 and 6 μm, making it a promising multitarget inhibitor of Mur ligases. Antibacterial activity against different strains, inhibitory activity against protein kinases, mutagenicity and genotoxicity of 5 a were also investigated, and kinetic and NMR studies were conducted.  相似文献   

13.
Monoamine oxidase (MAO) is a useful target in the treatment of neurodegenerative diseases and depressive disorders. Both isoforms, MAO‐A and MAO‐B, are known to play critical roles in disease progression, and as such, the identification of novel, potent and selective inhibitors is an important research goal. Here, two series of 3‐phenylcoumarin derivatives were synthesized and evaluated against MAO‐A and MAO‐B. Most of the compounds tested acted preferentially on MAO‐B, with IC50 values in the micromolar to nanomolar range. Only 6‐chloro‐4‐hydroxy‐3‐(2’‐hydroxyphenyl)coumarin exhibited activity against the MAO‐A isoform, while still retaining good selectivity for MAO‐B. 6‐Chloro‐3‐phenylcoumarins unsubstituted at the 4 position were found to be more active as MAO‐B inhibitors than the corresponding 4‐hydroxylated coumarins. For 4‐unsubstituted coumarins, meta and para positions on the 3‐phenyl ring seem to be the most favorable for substitution. Molecular docking simulations were used to explain the observed hMAO‐B structure–activity relationships for this type of compound. 6‐Chloro‐3‐(3’‐methoxyphenyl)coumarin was the most active compound identified (IC50=0.001 μM ) and is several times more potent and selective than the reference compound, R‐(?)‐deprenyl hydrochloride. This compound represents a novel tool for the further investigation of the therapeutic potential of MAO‐B inhibitors.  相似文献   

14.
As part of our research projects to identify new chemical entities of biological interest, we developed a synthetic approach and the biological evaluation of (7‐aryl‐1,5‐naphthyridin‐4‐yl)ureas as a novel class of Aurora kinase inhibitors for the treatment of malignant diseases based on pathological cell proliferation. 1,5‐Naphthyridine derivatives showed excellent inhibitory activities toward Aurora kinases A and B, and the most active compound, 1‐cyclopropyl‐3‐[7‐(1‐methyl‐1H‐pyrazol‐4‐yl)‐1,5‐naphthyridin‐4‐yl]urea ( 49 ), displayed IC50 values of 13 and 107 nM against Aurora kinases A and B, respectively. In addition, the selectivity toward a panel of seven cancer‐related protein kinases was highlighted. In vitro ADME properties were also determined in order to rationalize the difficulties in correlating antiproliferative activity with Aurora kinase inhibition. Finally, the good safety profile of these compounds imparts promising potential for their further development as anticancer agents.  相似文献   

15.
Monoamine oxidase B (MAO‐B) is an important drug target for the treatment of neurological disorders. A series of 6‐nitrobenzothiazole‐derived semicarbazones were designed, synthesized, and evaluated as inhibitors of the rat brain MAO‐B isoenzyme. Most of the compounds were found to be potent inhibitors of MAO‐B, with IC50 values in the nanomolar to micromolar range. Molecular docking studies were performed with AutoDock 4.2 to deduce the affinity and binding mode of these inhibitors toward the MAO‐B active site. The free energies of binding (ΔG) and inhibition constants (Ki) of the docked compounds were calculated by the Lamarckian genetic algorithm (LGA) of AutoDock 4.2. Good correlations between the calculated and experimental results were obtained. 1‐[(4‐Chlorophenyl)(phenyl)methylene]‐4‐(6‐nitrobenzothiazol‐2‐yl)semicarbazide emerged as the lead MAO‐B inhibitor, with top ranking in both the experimental MAO‐B assay (IC50: 0.004±0.001 μM ) and in computational docking studies (Ki: 1.08 μM ). Binding mode analysis of potent inhibitors suggests that these compounds are well accommodated by the MAO‐B active site through stable hydrophobic and hydrogen bonding interactions. Interestingly, the 6‐nitrobenzothiazole moiety is stabilized in the substrate cavity with the aryl or diaryl residues extending up into the entrance cavity of the active site. According to our results, docking experiments could be an interesting approach for predicting the activity and binding interactions of this class of semicarbazones against MAO‐B. Thus, a binding site model consisting of three essential pharmacophoric features is proposed, and this can be used for the design of future MAO‐B inhibitors.  相似文献   

16.
N‐Methyl‐bis‐(1,2,3,4‐tetrahydroisoquinolinium) analogues derived from AG525 (1,1′‐(propane‐1,3‐diyl)‐bis‐(6,7‐dimethoxy‐2‐methyl‐1,2,3,4‐tetrahydroisoquinoline)) stereoisomers and tetrandrine, a rigid bis‐(1,2,3,4‐tetrahydroisoquinoline) analogue with an S,S configuration, were synthesized and tested for their affinity for small‐conductance calcium‐activated potassium channel (SK/KCa2) subtypes using radioligand binding assays. A significant increase in affinity was observed for the quaternized analogues over the parent 1,2,3,4‐tetrahydroisoquinoline compounds. Interestingly, the impact of stereochemistry was not the same in the two groups of compounds. For quaternized analogues, affinities of S,S and R,R isomers for SK2 and SK3 channels were similar and in both cases higher than that of the meso derivative. Among the bis‐tetrahydroisoquinoline compounds, the S,S isomers exhibited high affinity, while the R,R and meso isomers had similarly lower affinities. Furthermore, the SK2/SK3 selectivity ratio was slightly increased for quaternized analogues. Bis‐(1,2,3,4‐tetrahydroisoquinolinium) represents a new scaffold for the development of high‐affinity ligands for SK channel subtypes.  相似文献   

17.
Herein we report the synthesis and neuroprotective effects of new N‐alkyl‐1,2,4‐oxadiazolidine‐3,5‐diones and their corresponding synthetic intermediates, N‐alkylhydroxylamines and N‐1‐alkyl‐3‐carbonyl‐1‐hydroxyureas, in an in vitro model of ischemia. We found five analogues that protect HT22 cells from death in the concentration range of 1–5 μM . Because members of the MAP kinase family are known to be key players in nerve cell survival and death, we characterized the role of these kinases in the neuroprotective mechanisms of the newly synthesized analogues. The results indicate that these compounds provide neuroprotection through distinct mechanisms of action.  相似文献   

18.
Methyl‐2‐amino‐5‐[2‐(4‐methoxyphenethyl)]thiophene‐3‐carboxylate ( 8 c ) is the prototype of a well‐defined class of tumor‐selective agents. Compound 8 c preferentially inhibited the proliferation of a number of tumor cell lines including many human T‐lymphoma/leukemia cells, but also several prostate, renal, central nervous system and liver tumor cell types. Instead, a broad variety of other tumor cell lines including B‐lymphomas and HeLa cells were not affected. The tumor selectivity (TS; selectivity index or preferential suppression of CEM lymphoma (IC50=0.90 μM ) versus HeLa tumor cell carcinoma (IC50=39 μM )) amounted up to ~43 for 8 c . At higher concentrations, the compound proved cytotoxic rather than cytostatic. The antiproliferative potency and selectivity of 8 c could be preserved by replacing the ethyl linker between the 2‐amino‐3‐carboxymethylthiophene and the substituted aryl by a thioalkyl but not by an oxyalkyl nor an aminoalkyl. Among >50 novel 8 c derivatives, the 5‐(4‐ethyl‐ and 4‐isopropylarylmethylthio)thiophene analogues, methyl‐2‐amino‐5‐((4‐ethylphenylthio)methyl)thiophene‐3‐carboxylate ( 13 m ) and methyl‐2‐amino‐5‐((4‐isopropylphenylthio)methyl)thiophene‐3‐carboxylate ( 13 n ), were more potent (IC50: 0.3–0.4 μM ) and selective (TS: 100–144) anti‐T‐lymphoma/leukemia agents than the prototype compound.  相似文献   

19.
The Suzuki cross‐coupling reaction was found effective for rapid access to a series of 3,4‐diarylisoxazoles of pharmacological interest. The efficiency of this approach was demonstrated by the synthesis of the highly potent COX‐2‐selective inhibitor, 4‐(5‐methyl‐3‐phenyl‐4‐isoxazolyl)benzenesulfonamide (valdecoxib), and its analogues. Thus, the coupling reaction between (3‐aryl‐5‐methyl‐4‐isoxazolyl)boronic acids, prepared in situ from the corresponding bromides using triisopropyl borate, and aryl bromides containing a 4‐sulfonamide or 4‐methylsulfonyl group under the standard conditions [Pd(PPh3)4, Na2CO3, EtOH‐H2O, reflux] yielded the target 3,4‐diarylisoxazoles in good yields.  相似文献   

20.
Monoamine oxidase (MAO) is an important drug target for the treatment of neurological disorders. Several 3‐arylcoumarin derivatives were previously described as interesting selective MAO‐B inhibitors. Preserving the trans‐stilbene structure, a series of 2‐arylbenzofuran and corresponding 3‐arylcoumarin derivatives were synthesized and evaluated as inhibitors of both MAO isoforms, MAO‐A and MAO‐B. In general, both types of derivatives were found to be selective MAO‐B inhibitors, with IC50 values in the nano‐ to micromolar range. 5‐Nitro‐2‐(4‐methoxyphenyl)benzofuran ( 8 ) is the most active compound of the benzofuran series, presenting MAO‐B selectivity and reversible inhibition (IC50=140 nM ). 3‐(4′‐Methoxyphenyl)‐6‐nitrocoumarin ( 15 ), with the same substitution pattern as that of compound 8 , was found to be the most active MAO‐B inhibitor of the coumarin series (IC50=3 nM ). However, 3‐phenylcoumarin 14 showed activity in the same range (IC50=6 nM ), is reversible, and also severalfold more selective than compound 15 . Docking experiments for the most active compounds into the MAO‐B and MAO‐A binding pockets highlighted different interactions between the derivative classes (2‐arylbenzofurans and 3‐arylcoumarins), and provided new information about the enzyme–inhibitor interaction and the potential therapeutic application of these scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号