首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Improving the antioxidant activity of chitosan was achieved by decreasing their molecular weight by γ rays followed by incorporation with vitamin C to prepare chitosan/vitamin C (CSVC) complex in the range of nanoparticles. Transmittance electron microscopy of CSVC complex showed mean diameters ranged from 23.2 to 82 nm. The antioxidant activities of CSVC complexes were examined using scavenging effect on DPPH radicals and reducing power measurements. CSVC complexes have a synergistic effect on increasing the antioxidant properties rather than their individual effects. The effect of CSVC complexes on lipid peroxidation of meat during 21 days of refrigerated storage was investigated using thiobarbituric acid reactive substance (TBARS) assay. Treatment of meat with CSVC complex reduced lipid peroxidation about 75% after 7 days of storage as a result the decrease in TBARS values. The results demonstrate promising use of CSVC complex as antioxidants for lipid storage. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42105.  相似文献   

2.
The O‐fumaryl ester (OFTMCS) of N,N,N‐trimethyl chitosan (TMCS) has been synthesized as a water‐soluble chitosan (CS) derivative bearing dual‐functional groups, with the aim of discovering novel CS derivatives with good water solubility and enhanced the antibacterial activity compared with unmodified CS. OFTMCS was characterized by FT‐IR, 13C NMR, XPS, XRD and Zeta potential analyses. The XPS results indicated that the degree of substitution (DS) on the C2‐NH2 group of the CS was 0.78, and that the DS on its C6‐OH group was 0.31. The TGA results showed that the thermal stability of OFTMCS was lower than that of unmodified CS. The antibacterial activities of OFTMCS were investigated by assessing the mortality rates of the representative Gram‐positive and Gram‐negative bacteria Staphylococcus aureus and Escherichia coli, respectively. The results indicated that OFTMCS exhibited superior antibacterial activity to CS at a lower dosage. The synthesis of CS derivatives bearing dual‐functional groups could therefore be used as a promising strategy to enhance the antibacterial activity of CS. The antimicrobial mechanism of action of OFTMCS was discussed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42663.  相似文献   

3.
Novel self‐supported natural and synthetic polymer membranes of chitosan‐hydroxy ethyl cellulose‐montmorillonite (CS‐HEC‐MMT) and polyvinyl alcohol (PVA)‐polystyrene sulfonic acid (PSSA) are prepared by solution casting method followed by crosslinking. These membranes are employed for air humidification at varying temperatures between 30°C and 70°C and their performances are compared with commercial Nafion® membranes. High water fluxes with desired humidified‐air output have been achieved for CS‐HEC‐MMT and PVA‐PSSA hybrid membranes at air‐flow rates of 1–10 slpm. Variation in the air/water mixing ratio, dew point, and relative humidity that ultimately results in desired water flux with respect to air‐flow rates are also quantified for all the membranes. Water flux values for CS‐HEC‐MMT are less than those for Nafion® and PVA‐PSSA membranes, but the operational stability of CS‐HEC‐MMT membrane is higher than PVA‐PSSA and comparable with Nafion® both of which can operate up to 70°C at repetitive cycles of humidification. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Aniline/p‐phenylenediamine copolymer [poly(ANI‐cop‐PDA)] was prepared by chemical oxidative polymerization. FTIR and 1H‐NMR analysis indicate that the poly(ANI‐cop‐PDA) is oligomer with end‐capped amino groups, which can cure epoxy resin. The anticorrosion performance of carbon steel (CS) samples coated by epoxy resin coating cured with poly(ANI‐cop‐PDA) and epoxy resin coating cured with triethylenetetramine exposed to 5 wt % NaCl and 0.1 mol/L HCl aqueous solution is studied by the potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the CS coated by epoxy resin coating cured with poly (ANI‐cop‐PDA) has more excellent corrosion protection than that of epoxy resin coating cured with triethylenetetramine. Raman spectroscopy analysis indicates that the surface of CS coated by epoxy resin coating cured with poly(ANI‐cop‐PDA) forms passive layer, which is composed of α‐Fe2O3. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
In this study, immobilization of laccase (L) enzyme on magnetite (Fe3O4) nanoparticles was achieved, so that the immobilized enzyme could be used repeatedly. For this purpose, Fe3O4 nanoparticles were coated and functionalized with chitosan (CS) and laccase from Trametes versicolor was immobilized onto chitosan‐coated magnetic nanoparticles (Fe3O4‐CS) by adsorption or covalent binding after activating the hydroxyl groups of chitosan with carbodiimide (EDAC) or cyanuric chloride (CC). For chitosan‐coated magnetic nanoparticles, the thickness of CS layer was estimated as 1.0–4.8 nm by TEM, isoelectric point was detected as 6.86 by zeta (ζ)‐potential measurements, and the saturation magnetization was determined as 25.2 emu g?1 by VSM, indicating that these nanoparticles were almost superparamagnetic. For free laccase and immobilized laccase systems, the optimum pH, temperature, and kinetic parameters were investigated; and the change of the activity against repeated use of the immobilized systems were examined. The results indicated that all immobilized systems retained more than 71% of their initial activity at the end of 30 batch uses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Removal of dyes from the industrial discharge water is an important issue for safety of the environment. In this study, magnetic (magnetite, Fe3O4) nanoparticles were coated with chitosan (CS) and the efficiency of these chitosan coated magnetic nanoparticles (Fe3O4‐CS) for the adsorption of a reactive textile dye (Reactive Yellow 145, RY145) was examined first time in literature. TEM, XRD, and EPR results revealed that the thickness of the coat was about 2–5 nm, no phase change in the spinel structure of magnetic particles existed after coating, and particles had paramagnetic property, respectively. Adsorption of RY145 on Fe3O4‐CS nanoparticles occurs according to Langmuir model in the temperature range 25°C–45°C with a maximum adsorption capacity of 47.62 mg g?1 at 25°C, in aqueous media. Thermodynamic parameters demonstrated that the adsorption process was endothermic and spontaneous, and the maximum desorption of the dye was 80% over a single adsorption/desorption cycle. In this study, the high efficiency of the CS coated magnetic nanoparticles in the adsorption and removal of reactive dyes from water was shown on model RY145. This type of nanoparticles can be good candidates in industrial applications for the decolorization of waste waters. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Melamine–formaldehyde–polyvinylpyrrolidone (MFP) polymer resin was prepared with 1 : 16 : 1 ratios of melamine, formaldehyde (CH2O), and polyvinylpyrrolidone amounts, respectively, by condensation polymerization at 6.9 pH. Structures were determined with IR, 1H‐NMR, and 13C‐NMR spectroscopies. Chemical shifts (δ, ppm) were analyzed with singlet at δ 4.5, duplet from 3.13 to 3.17 and a quartet at 1.5 to 2.2 ppm for methylene (? CH2? ) bridging group, pyrrolidone, and polyvinyl constituents. The 3389.25, 1290.38, and 1655.28 cm?1 stretching frequencies of ? N?, ? CH? and ? C? O? O? groups, respectively, were noted on FTIR spectrum. The ? C?N? melamine units reacted with CH2O to adjoin with polyvinylpyrrolidone (PVP). An average viscosity molecular weight ( v) 57,000 g mol?1 was obtained with Mark–Houwink–Sakurada equation. The chemical shift of ? N(CH2O)2? C? pyrrolidone ring on 13C‐NMR spectra was shifted toward lower magnetic field at 175.18 ppm. The resin was partially miscible with water thereby densities and viscosities of aqueous solutions were measured at 298.15 K temperature. It showed higher densities and viscosities than those of water. The resin developed exceptionally higher adhesive strengthen when its 62.29‐μm uniform thin film was applied on surfaces of wooden strips. The resin showed micellar behavior at about 0.009 g/100 mL aqueous solution. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
BACKGROUND: The degradation and mineralisation of the antibiotic amoxicillin by photo‐Fenton reactions, mediated by artificial UVA or solar irradiation, were investigated. Experiments were conducted with 30 mg L?1 amoxicillin solutions prepared with deionised or surface water at Fe2+ and H2O2 concentrations in the range 0.0179–0.0895 and 1–10 mmol L?1, respectively. Black‐light irradiation at 365 nm was provided by a 13 W m?2 lamp, while samples were exposed to sunlight at 20 W m?2 for solar experiments. RESULTS: In all cases, quantitative amoxicillin degradation occurred within 5 min and this was accompanied by lower mineralisation rates. Mineralisation followed first‐order kinetics with respect to organic carbon content and it was not affected by the water matrix with either type of illumination. Solar‐induced reactions were only marginally faster than artificial irradiation. Increasing the H2O2 to Fe2+ concentration ratio increases the extent of mineralisation up to a point beyond which degradation is impeded due to radical scavenging associated with the high concentrations of the Fenton reagents. CONCLUSION: Amoxicillin is readily degradable by homogeneous photocatalysis, being converted to more stable intermediates as indicated by lower mineralisation rates. The process can be driven by solar irradiation, thus providing a sustainable treatment technology. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Dense BaCo0.7Fe0.2Ta0.1O3?δ (BCFT) perovskite membranes were successfully synthesized by a simple solid state reaction. In situ high‐temperature X‐ray diffraction indicated the good structure stability and phase reversibility of BCFT at high temperatures. The thermal expansion coefficient (TEC) of BCFT was determined to amount 1.02 × 10?5 K?1, which is smaller than those of Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) (1.15 × 10?5 K?1), SrCo0.8Fe0.2O3?δ (SCF) (1.79 × 10?5 K?1), and BaCo0.4Fe0.4Zr0.2O3?δ (BCFZ) (1.03 × 10?5 K?1). It can be seen that the introduction of Ta ions into the perovskite framework could effectively lower the TEC. Thickness dependence studies of oxygen permeation through the BCFT membrane indicated that the oxygen permeation process was controlled by bulk diffusion. A membrane reactor made from BCFT was successfully operated for the partial oxidation of methane to syngas at 900°C for 400 h without failure and with the relatively high, stable oxygen permeation flux of about 16.8 ml/min cm2. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

10.
The fixed‐bed oxygen absorption processes of the series of Ba1?xSrxCo0.8Fe0.2O3?δ oxides were studied by oxygen partial pressure swing absorption in the temperature range of 300–850°C. The results show that SrCo0.8Fe0.2O3?δ, with the smallest A‐site ion radius, has the largest oxygen absorption capacity (0.402 mmol/g) at 500°C. The oxygen absorption and desorption kinetics fit well with the pseudo‐second‐order kinetics model. Comparing the modeling absorption rate coefficient k2 with the desorption rate coefficient k2′, all the oxides studied had higher oxygen absorption rates than oxygen desorption ones. In addition, the combined results of X‐ray diffraction analysis, O2‐TPD, room temperature iodometric titration, and thermogravimetric analysis explained the relationship between the oxygen absorption capacities and the average radii of the A‐site ions for this series of Ba1?xSrxCo0.8Fe0.2O3?δ in the temperature range of 300–600°C. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

11.
The photooxidative deterioration of unsaturated food oils by near UV and visible light was found to be retarded by nickel (II) chelates well known to quench singlet oxygen (1O2). The rates of hydroperoxide formation during light exposure were unaffected by efficient peroxy radical scavengers such as hindered phenols. α-Tocopherol (vitamin E) underwent a relatively rapid oxidation itself when exposed to1O2 in oil solutions, despite being able to deactivate1O2 quite efficiently. From a comparison of the rates of scavenging by stabilizers and attack on allyl groups,1O2 initiated deterioration is appreciably more difficult to retard than peroxy radical processes. Issued as National Research Council of Canada 15504.  相似文献   

12.
The oxidative polycondensation reaction conditions of 4‐[(2‐mercaptophenyl) imino methyl] phenol (2‐MPIMP) were studied in an aqueous acidic medium between 40 and 90°C by using oxidants such as air, H2O2, and NaOCl. The structures of the synthesized monomer and polymer were confirmed by FTIR, 1H NMR, 13C NMR, and elemental analysis. The characterization was made by TGA‐DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly‐4‐[(2‐mercaptophenyl) imino methyl]phenol (P‐2‐MPIMP) was found to be 92% for NaOCl oxidant, 84% for H2O2 oxidant 54% for air oxidant. According to the SEC analysis, the number‐average molecular weight (Mn), weight‐average molecular weight (Mw), and polydispersity index values of P‐2‐MPIMP were found to be 1700 g mol?1, 1900 g mol?1, and 1.118, using H2O2; 3100 g mol?1, 3400 g mol?1, and 1.097, using air; and 6750 g mol?1, 6900 g mol?1, and 1.022, using NaOCl, respectively. According to TG analysis, the weight losses of 2‐MPIMP and P‐2‐MPIMP were found to be 95.93% and 76.41% at 1000°C, respectively. P‐2‐MPIMP showed higher stability against thermal decomposition. Also, electrical conductivity of the P‐2‐MPIMP was measured, showing that the polymer is a typical semiconductor. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and the electrochemical energy gaps (Eg) of 2‐MPIMP and P‐2‐MPIMP were found to be ?6.13, ?6.09; ?2.65, ?2.67; and 3.48, 3.42 eV, respectively. Kinetic and thermodynamic parameters of these compounds investigated by MacCallum‐Tanner and van Krevelen methods. The values of the apparent activation energies of thermal decomposition (Ea), the reaction order (n), pre‐exponential factor (A), the entropy change (ΔS*), enthalpy change (ΔH*), and free energy change (ΔG*) were calculated from the TGA curves of compounds. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A novel N,O‐carboxymethyl hydroxypropyl chitosan (HPCMS) derivative was prepared by a two‐step reaction. Water‐soluble hydroxypropyl chitosan (HPCS) with a degree of substitution of hydroxypropyl higher than 0.8 was first synthesized by the reaction of chitosan (CS) with propylene oxide (PO) with alkali as a catalyst. Then, amphoteric chitosan derivatives (HPCMS) with a degree of substitution of carboxymethyl ranging from 0.42 to 1.38 were prepared by the reaction of HPCS with chloroacetic acid in an aqueous solution with alkali as a catalyst. The structures of the polymers were characterized by Fourier transform infrared spectroscopy and NMR; this showed that the hydroxypropylation mainly occurred on the ? OH groups at the C‐6 of CS in the reaction of CS with PO. In the reaction of HPCS with chloroacetic acid, both the ? OH and ? NH2 groups of HPCS were susceptible to the carboxymethylation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40460.  相似文献   

14.
The oxidative coupling reaction of 2,6‐dimethylphenol (DMP) with H2O2 catalyzed by four copper(II) complexes was investigated in Tris‐HNO3 buffer solution at 25°C. The kinetics of formation of diphenoquinone (DPQ, 4‐(3,5‐dimethyl‐4‐oxo‐2,5‐cyclohexadienylidene)‐2,6‐dimethyl‐2,5‐cyclohexadienone) from DMP was studied in detail. The kinetic parameters k2 and Km were obtained in the pH range of 6.0–9.0. The copper(II) complexes exhibited the optimal catalytic activity at around pH 7.0. The pH effect was reasonably explicated by the catalytic kinetic model suggested in this work. The catalytic mechanism was discussed. The deprotonized associated radical LCuI(OH?)‐?OOH was suggested as the possible predominant species to oxidize DMP. The C? C and C? O coupling products were analyzed and the ratio of poly (2,6‐dimethyl‐1,4‐phenylene ether) (PPE) to DPQ was also evaluated. Both in weak acidic (pH < 6.5) and in alkaline aqueous solution (pH > 8) were suitable to the C? O coupling reaction in our catalytic systems. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
BACKGROUND: A single‐step conversion of nitrobenzene (NB) to p‐aminophenol (PAP) through catalytic hydrogenation is a widely used synthesis route for PAP. The main shortcoming of this route is the use of sulfuric acid for rearrangement of the phenylhydroxylamine (PHA) intermediate. In this paper, S2O82?/ZrO2 (PSZ) solid acid and Pt‐S2O82?/ZrO2 (Pt‐PSZ) bifunctional catalysts were prepared for the synthesis of PAP in non‐acid medium. RESULTS: Calcination temperature has a substantial effect on the acidity, structure and activity for PHA rearrangement of PSZ. The highest PAP yield was 33.8% over PSZ calcined at 823 K when the reaction was carried out in water at 423 K. A high PAP yield of 23.9% was achieved by a single‐step reaction of nitrobenzene over Pt‐PSZ bifunctional catalysts. CONCLUSION: PSZ solid acid exhibits high activity for PHA rearrangement. Perfect tetragonal ZrO2 and much stronger acid sites play important roles in catalytic activity. Inhibiting the hydrogenation activity by reducing the amount of Pt loading on Pt‐PSZ can improve the competition of PHA rearrangement on acid sites with hydrogenation of PHA on metal active sites, resulting in better selectivity to PAP. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
How to improve adhesion between poly(oxybenzoate‐co‐oxynaphthoate) (Vecstar OC and FA films) and copper metal by Ar, O2, N2 and NH3 plasma modification was investigated. The mechanism of adhesion improvement is discussed from the viewpoint of chemical and physical interactions at the interface between the Vecstar film and copper metal layer. The adhesion between Vecstar OC film and copper metal was improved by chemical rather than physical interactions. Polymer chain end groups that occur at Vecstar OC film surfaces contribute effectively to adhesion. This improvement in adhesion is due to interactions between copper metal and O?C groups formed by plasma modification. Aggregation of the O?C groups to the copper metal/Vecstar OC film interface is a key factor for good adhesion. From this aspect, heat treatment of plasma‐modified Vecstar OC films on glass plates is effective in the aggregation, and the peel strength for the copper metal/Vecstar OC film system reached 1.21 N (5 mm)?1. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
The latexes of polysiloxane and acrylate with methacryloxypropyl trimethoxysilane (MPS)–polydimethylsiloxane (PDMS) oligomer as macromonomer and Gemini surfactant as coemulsifier were prepared by emulsion copolymerization and characterized by 1H‐nmr, gel‐permeation chromatography (GPC), FTIR, x‐ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). First, the oligomer of MPS‐PDMS (Si? O? Si chain length = 24) were synthesized by the hydrolysis of MPS and the ring‐opening polymerization of octamethyl tetracyclosiloxane (D4), the 1H‐NMR and FTIR spectra indicated that when the reaction time was prolonged to 2 h, more than 90% of ? Si (OCH3)3 groups were hydrolyzed; Then, the emulsion polymerization was performed with the oligomer as macromonomer and Gemini Surfactant as coemulsifier, the result of FTIR indicated that almost all the macromonomer had been exhausted because there was no C?C characteristic peaks in the spectrum. XPS investigation of the latexes showed that with the increase of siloxane content, more and more polysiloxane occupied the outer layer of the membrane, which agreed well with the conclusion of contact angle and AFM measurements. With Gemini surfactant as coemulsifier in the system, the PDMS content in the system could reach to 50%, which was far higher than the other reported value. © 2009 Wiley Periodicals, Inc. Journal of Applied Polymer Science, 2009  相似文献   

18.
An effective method was developed to isolate toxic heavy metal ions from the aqueous solution by the magnetic nanopolymers. The magnetic sorbent was prepared with radiation‐induced crosslinking polymerization of chitosan (CS), 2‐acrylamido‐glycolic acid (AMGA), and acrylic acid (AAc), which stabilized by magnetite (Fe3O4) as nanoparticles. The formation of magnetic nanoparticles (MNPs) into the hydrogel networks was confirmed by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and Scanning electron microscopy, which revealed the formation of MNPs throughout the hydrogel networks. The swelling behavior of the hydrogels and magnetic ones was evaluated at different pH values. The adsorption activity for heavy metals such as Cu2+ and Co2+ by nonmagnetic and magnetic hydrogels, Fe3O4/CS/(AMGA‐co‐AAc), in terms of adsorption amount was studied. It was revealed that hydrogel networks with magnetic properties can effectively be used in the removal of heavy metal ions pollutants and provide advantageous over conventional ones. POLYM. ENG. SCI., 55:1441–1449, 2015. © 2015 Society of Plastics Engineers  相似文献   

19.
Nanofiber‐like mesoporous γ‐Al2O3 was synthesized using freshly prepared boehmite sol in the presence of triblock copolymer, P123 following evaporation‐induced self‐assembly (EISA) process followed by calcinations at 400°C–1000°C. The samples were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X‐ray diffraction (XRD), N2 adsorption–desorption, and transmission electron microscopy (TEM). The adsorption efficiency of the samples with Congo red (CR) was studied by UV – vis spectroscopy. XRD results showed boehmite phase in the as‐prepared sample while γ‐Al2O3 phase obtained at 400°C was stable up to 900°C, a little transformation of θ‐Al2O3 resulted at 1000°C. The Brunauer‐Emmett‐Teller surface area of the 400°C‐treated sample was found to be 175.5 m2g ? 1. The TEM micrograph showed nanofiber‐like morphology of γ‐Al2O3. The 400°C‐treated sample showed about 100% CR adsorption within 60 min.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号