首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamically vulcanized PP/EPDM blends were treated by high‐intensity ultrasonic waves during extrusion. These blends were compared with unvulcanized PP/EPDM blends that were treated by ultrasound during extrusion and then dynamically vulcanized. Die pressure and power consumption were measured. The effects of different gap sizes, ratio of components, and number of ultrasonic horns were investigated. The rheological properties, morphology and mechanical properties of the blends with and without ultrasonic treatment were compared. The results obtained indicated that ultrasonic treatment induced thermo‐mechanical degradation, causing enhanced molecular transport and chemical reactions at the interfaces, thus leading to in‐situ compatibilization, which is evident by the morphological and mechanical property studies. Processing conditions were established for enhanced in‐situ compatibilization of the PP/EPDM blends that were either originally dynamically vulcanized and then ultrasonically treated or first treated and then dynamically vulcanized. Polym. Eng. Sci. 44:2019–2028, 2004. © 2004 Society of Plastics Engineers.  相似文献   

2.
Ethylene‐propylene‐diene‐terpolymer (EPDM) and polypropylene (PP)‐based uncross‐linked and dynamically cross‐linked blends were prepared both in an internal mixer and in a corotating twin‐screw extruder. The effects of composition, plasticization and mixing equipment on the morphology development and the final viscoelastic properties were studied. In the uncross‐linked blends, the plasticization resulted in a coarser morphology. Furthermore, it was shown that the majority of the plasticizer resided in the EPDM phase, enabling its deformation in the flow direction. In addition, the intensive mixing conditions inside the twin‐screw extruder resulted in a finer morphology. In the dynamically cross‐linked blends, the twin‐screw extrusion process resulted in a higher level of gel content with larger EPDM domains. The plasticization showed again a coarsening effect, resulting in interconnected cross‐linked EPDM domains. An interesting interfacial phenomenon was observed especially in the plasticized vulcanized blends where nanometer size occluded PP domains were stripped off and eroded into the EPDM phase. With the exception of the nonplasticized uncross‐linked blends, the viscoelastic properties of all other blending systems were found to be directly affected by the morphology, gel content (in the case of cross‐linked blends), and the presence of the plasticizer. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

3.
Dynamically vulcanized thermoplastic elastomer (TPE) nanocomposites based on polypropylene (PP), ethylene‐propylene diene monomer (EPDM) and cloisite 15A were prepared via direct melt mixing in a co‐rotating twin‐screw extruder. The mixing process was carried out with optimized processing parameters (barrel temperature = 180°C; screw speed = 150 rpm; and feeding rate = 0.2 kg/hr). The formulation used to prepare the nanocomposites was fixed to 75/20/5 (PP/EPDM/Cloisite©15A), expressed in mass fraction. Effect of mixing sequence on the properties of vulcanized and unvulcanized (TPE) nanocomposites prepared under similar conditions was investigated using X‐ray diffraction (XRD) and a tensile testing machine. Results showed that the sequence of mixing does affect the properties of final TPE nanocomposites. Accordingly, nanocomposite samples prepared through mixing the preblended PP/clay masterbatch with EPDM phase, show better clay dispersion within the polymer matrix. J. VINYL ADDIT. TECHNOL., 22:320–325, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
Dynamically vulcanized blends of polyoxymethylene (POM) and ethylene propylene diene terpolymer (EPDM) with and without compatibilizer were prepared by melt mixing in a twin screw extruder. Maleic anhydride (MAH) grafted EPDM (EPDM‐g‐MAH) has been used as a compatibilizer. Dicumyl peroxide was used for vulcanizing the elastomer phase in the blends. Mechanical, dynamical mechanical, thermal, and morphological properties of the blend systems have been investigated as a function of blend composition and compatibilizer content. The impact strength of both dynamically vulcanized blends and compatibilized/dynamically vulcanized blends increases with increase in elastomer content with decrease in tensile strength. Dynamic mechanical analysis shows decrease in tanδ values as the elastomer and compatibilizer content increased. Thermograms obtained from differential scanning calorimetric studies reveal that compatibilized blends have lower Tm values compared to dynamically vulcanized blends, which confirms strong interaction between the plastic and elastomer phase. Scanning electron microscopic observations on impact fractured surface indicate reduction in particle size of elastomer phase and its high level of dispersion in the POM matrix. In the case of compatibilized blends high degree of interaction between the component polymers has been observed. POLYM. ENG. SCI., 47:934–942, 2007. © 2007 Society of Plastics Engineers  相似文献   

5.
动态硫化EPDM/PP共混物力学性能的研究   总被引:6,自引:1,他引:6       下载免费PDF全文
考察了硫黄用量和聚合物共混比对动态硫化EPDM/PP热塑性弹性体性能的影响。结果表明,随着硫黄用量增大,EPDM/P共混物的拉伸强度、100%定伸应力和扯断伸长率先增大后减小、硬度有所增大,随着PP用量的增大,EPDM/PP共混物的拉伸强度、100%定伸应力和硬度均有所增大,扯断伸长率也先大后减小。PP用量的变化对这些性能的影响更显。  相似文献   

6.
A new copolymer of tris(2‐methoxyethoxy) vinylsilane (TMEVS)‐grafted ethylene–propylene–diene elastomer (EPDM‐g‐TMEVS) has been developed by grafting of TMEVS onto EPDM by using dicumylperoxide (DCP) initiator. The linear polystyrene blends (EPDM‐g‐TMEVS/PS) based on EPDM‐g‐TMEVS have been synthesized with varying weight percentages of polystyrene in a twin‐screw extruder. In a similar manner, the dynamically vulcanized and nanoclay‐reinforced polystyrene blends have also been developed using DCP and organically modified montmorillonite clay separately by means of a twin‐screw extruder. The grafting of TMEVS onto EPDM at allylic position present in the third monomer of EPDM has been confirmed by Fourier Transform infrared spectroscopy. The effect of silane‐grafted EPDM and concentration of nanoclay on mechanical properties of polystyrene blends has been studied as per ASTM standards. The morphological behavior of these blends has been investigated using scanning electron microscope. It was observed that the incorporation of silane‐grafted EPDM enhanced the impact strength and the percentage elongation of linear‐ and dynamically vulcanized blends. However, the values of tensile strength, flexural strength, flexural modulus, and hardness of the blends were found to be decreasing with the increase of silane‐grafted EPDM. In the case of nanoclay‐reinforced polystyrene blends, the values of impact strength, tensile strength, flexural strength, flexural modulus, and hardness were increased with an increase in the concentration of nanoclay. XRD studies have been carried out to confirm the formation of nanoclay‐reinforced EPDM‐g‐TMEVS/PS blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Ethene/propene terpolymers containing either 1‐vinylcylohexene‐4 (VCHen) or vinylcyclohexane (VCHan) as termonomer component were prepared using MAO‐activated rac‐Me2Si(2‐MeBenz[e]Ind)2ZrCl2 (MBI). Propene content was varied between 26 and 72 wt.‐% with less than 1 mol‐% termonomer incorporation. Blends containing 85 vol.‐% isotactic polypropene (i‐PP) and 15 vol.‐% of the two EP terpolymer families were prepared by melt‐compounding in a twin‐screw kneader at 200°C to examine the role of sulfur‐mediated crosslinking of the unsaturated EPDM terpolymer phase in comparison to the corresponding blends containing non‐crosslinked saturated EP/VCHan terpolymers. The observed glass temperature (Tg) depression of the Tg of EP(D)M phases with respect to the Tg of the corresponding bulk EP(D)M was attributed to the presence of thermally induced stresses in both blend systems. Blends of i‐PP with crosslinked EPDM showed smaller Tg depression with respect to those of iPP/EPM blends containing non‐crosslinked EP and EPM dispersed phases. Morphology differences were detected for i‐PP/EPM and dynamically vulcanized i‐PP/EPDM blends by means of atomic force microscopy (AFM). The crosslinked i‐PP/EPDM blends exhibited significantly improved low temperature toughness as compared to the corresponding non‐crosslinked i‐PP/EPM blends. Curing of the EPDM elastomer phase in i‐PP/EPDM (85 vol.‐%/15 vol.‐%) blends afforded significantly improved toughness/stiffness balance and a wider toughness window with respect to the corresponding i‐PP/EPM and i‐PP/EP blends without sulfur‐cured rubber phases.  相似文献   

8.
Mechanical, dynamic, thermal, and morphological properties of dynamically cured 60/40 NR/PP TPVs with various loading levels of paraffinic oil were investigated. It was found that stiffness, hardness, tensile strength, storage shear modulus, complex viscosity, glass transition temperature (Tg) of the vulcanized rubber phase, degree of crystallinity and crystalline melting temperature (Tm) of the polypropylene (PP) phase decreased with increasing loading levels of oil. This is attributed to distribution of oil into the PP and vulcanized rubber domains causing oil‐swollen amorphous phase and vulcanized rubber domains. An increasing trend of elastic response in terms of tension set and damping factor was observed in the TPVs with loading levels of oil in a range of 0–20 phr. It is supposed that a major proportion of oil was first preferably migrated into the PP phase and caused an abrupt decreasing trend of degree of crystallinity and Tm of the PP phase. The dispersed vulcanized rubber domains remained small as particles with a low degree of swelling. Increasing loading levels of oil higher than 20 phr caused a decreasing trend of elongation at break and elastomeric properties. Saturation of oil in the PP phase was expected and the excess oil was transferred to the rubber phase which thereafter caused larger swollen vulcanized rubber domains. The remaining amount of oil was able to separate as submicron pools distributed in the PP matrix. This caused lowering of Tg, Tm, crystallinity of PP phase as well as strength, elastomeric, and dynamic properties of the TPVs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
This paper discusses process development, tensile properties, morphology, oil resistance, gel content, and thermal properties of polypropylene (PP)/ethylene-propylene diene terpolymer (EPDM)/natural rubber (NR) vulcanized blends with the addition of N,N-m-phenylenebismaleimide (HVA-2) as a compatibilizer. Blends were prepared in several blend ratios in a Haake Polydrive with temperature and rotor speed of 180°C and 50 rpm, respectively. Results indicated that the combination of dicumyl peroxide (Dicup) with HVA-2 shows high torque development and stabilization torque as compared to the blend with Dicup vulcanization alone. In terms of tensile properties, the combination of Dicup with HVA-2 shows higher tensile strength, tensile modulus (M100), elongation at break, oil resistance, and gel content in all blend ratios compared to similar vulcanized blends with Dicup without HVA-2 addition. Scanning electron microscope (SEM) micrographs of the blends support that the cross-linking and compatibilization occur during the process of the vulcanized blend containing HVA-2. In the case of crystallinity of the blends, the addition of HVA-2 in Dicup vulcanized blend revealed a tendency for the percentage of crystallinity (Xc) to decrease. The addition of HVA-2 in Dicup vulcanization also produced blends with good thermal stability dealing with the so-called coagent bridge formation.  相似文献   

10.
采用三螺杆电磁动态反应挤出机制备动态硫化聚丙烯/三元乙丙橡胶(PP/EPDM)共混物,研究了在振幅A=0.55mm下,不同振频对PP/EPDM共混物力学性能、玻璃化转变温度(Tg)、相容性及微观形貌的影响。结果表明:随着振频的提高,共混体系的拉伸性能及两组分的Tg均有提高;在振频为15Hz时,共混物的拉伸性能出现最大值,而EPDM组分的Tg提高的最为显著,由稳态的-16.49℃升高到-2.99℃;随着振频的提高,共混体系的相容性有显著改善,橡胶相粒径更小、更均匀地分布在PP相中。  相似文献   

11.
动态硫化PP/EPDM性能对共混工艺的依赖及其机理研究   总被引:13,自引:0,他引:13  
吴唯  李远 《中国塑料》1999,13(1):22-30
本文通过对一步法和母料法两种共混工艺制备的动态硫化PP/EPDM力学性能、拉伸形变特性,熔体流动行为,交联程度和微观结构等的表征和分析,研究了动态硫化PP/EPDM性能对共混工艺的依赖及其作用机理。结果显示,在保证有效地提高材料加工流动性的前提下,母料法能有效地抑制动态硫化中PP的降解,提高EPDM的交联程度,粒度均匀性和分散均匀性,从而强化材料的增韧效果以及其它力学性能,并提高材料性能的均匀性。  相似文献   

12.
研究了聚丙烯/三元乙丙橡胶(PP/EPDM)体系在过氧化二异丙苯(DCP)、硫磺(S)和酚醛树脂(PF)三种不同硫化条件下的动态硫化过程。探讨了膨胀型阻燃剂三聚氰胺磷酸盐(MP)和双季戊四醇(DPER)对PP/EPDM动态硫化体系力学性能和阻燃性能的影响。结果表明:在加入阻燃剂的情况下,PP/EPDM体系的阻燃性能得到了改善,但体系的力学性能下降较多。  相似文献   

13.
EPDM/PP有机过氧化物动态硫化研究   总被引:2,自引:2,他引:2  
研究了EPDM/PP有机过氧化物动态硫化体系,结果表明,由该体系制得的EPDM/PP热塑性弹性体具备较好的力学性能和加工性能。  相似文献   

14.
The average concentrations of negative air ions (Cion?) emitted from tourmaline (T), bamboo charcoal (B) particles, and tourmaline/bamboo charcoal (T/B) compounds containing polypropylene (PP) and ethylene propylene diene terpolymer/polypropylene (EPDM/PP) composite specimens under varying testing conditions were investigated in this study. The Cion? values emitted from T or B filled PP and EPDM/PP composite specimens reached a maximum value as their T or B contents approached the 5 and 3 wt % optimum values, respectively. In contrast, the Cion? values of T/B compounds filled PP and EPDM/PP composite specimens were significantly higher than their theoretical Cion? values estimated using the “simple mixing rule,” and reached a maximum value as the weight ratio of T to B reaches an optimum value. At this optimum T/B weight ratio, the Cion? values of T/B compounds filled PP and EPDM/PP composite specimens reached another maximum as their total compound loadings reached the optimum loading of 6 and 4 wt %, respectively. The Cion? values of the PP/T/B and EPDM/PP/T/B specimens increased significantly as they were tested under dynamic mode or by increasing the testing temperatures. The T and/or T/B powders filled PP and EPDM/PP specimens exhibited significantly higher tensile strength (σf) and elongation at break (εf) values than did the B filled PP and EPDM/PP specimens with the same filler loadings, respectively. Energy dispersive X‐rays, particle size, and SEM morphology analysis of the filler particles present in the T, B, and T/B filled composite specimens were performed to understand these interesting negative air ion and tensile properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
The tensile properties of three types of injection molded glass bead (GB) filled polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) ternary composites have been determined at room temperature by using an Instron materials testing machine. The effects of the filler surface treatment, the glass bead (GBI) pretreated with a silane coupling agent and the EPDM (EPDM-MA) modified with a maleic anhydride, and the filler content on the tensile mechanical properties of the ternary PP composites have been investigated. The Young's modulus (Ec) increases while the yield stress (σyc) and tensile fracture strength (σbc) of the composites decrease with increasing the volume fraction of glass beads (ϕg) when the volume fraction of EPDM is constant (ϕe = 10%). The (Ec) values of PP/EPDM/GBI and ϵbc for PP/EPDM-MA/GB2 (no surface pretreated) systems are the highest at the same ϕg. The tensile fracture energy (Ebc) and tensile fracture strain (ϵbc) of PP/EPDM/GBI and PP/EPDM/GB2 systems appear to peak at ϕg = 25%. However, the Ebc and ϵbc of PP/EPDM-MA/GB2 system show little changes with increasing ϕg. The fracture surfaces of ternary composites have been examined in a scanning electron microscope. The correlation between the tensile properties and morphologies of these materials have been discussed.  相似文献   

16.
研究动态硫化EPDM/PP热塑性弹性体相态结构及其力学行为。结果表明:动态硫化EPDM/PP共混物相态是EPDM橡胶以颗粒状分布在PP连续相中,这种相态结构一般不随橡塑比的变化而改变,但EPDM橡胶颗粒的形态变化显著。动态硫化EPDM/PP共混物,在橡塑比小于25/75,共混物具有类似橡胶应力-应变特征。  相似文献   

17.
研究了双螺杆挤出机制备EPDM/PP热塑性弹性体的工艺条件对其力学性能的影响,结果显示,当橡塑比为60/40.EPDM与PP预混合两次,双螺杆挤出机转速约9.5Hz,硫化剂的量为10份时,热塑性弹性体有较好的力学性能。  相似文献   

18.
The morphology and dynamic viscoelastic properties of isotactic polypropylene (PP) blended with oil-free/oil-extended ethylene–propylene–diene (EPDM) rubbers were studied. Unvulcanized and dynamically vulcanized blends with the compositions PP/EPDM = 50/50 and = 30/70 were investigated. The morphology was observed by phase contrasted atomic force microscopy. The dynamic viscoelastic properties were determined with a rheometer of plate–plate configuration. It was shown that the rheological behavior was strongly affected by both the composition and the morphology of the blends. Significant improvement in the flowability of the dynamically vulcanized blends was observed when oil-extended EPDM was used instead of the oil-free version. It was demonstrated that the rheological properties are mostly controlled by the elastomer phase at low frequencies, while in the high-frequency range the influence of PP becomes dominant. The peculiarities in the rheological behavior of the thermoplastic elastomers (uncured blends, TPE) and thermoplastic dynamic vulcanizates (TPV, dynamically cured blends) containing oil-extended EPDMs were traced to a limited compatibility between the PP and EPDM components in the melt. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Polypropylene (PP)/nylon 11/maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MAH) ternary polymer blends were prepared via melt blending in a corotating twin‐screw extruder. The effect of nylon 11 and EPDM‐g‐MAH on the phase morphology and mechanical properties was investigated. Scanning electron microscopy observation revealed that there was apparent phase separation for PP/EPDM‐g‐MAH binary blends at the level of 10 wt % maleated elastomer. For the PP/nylon 11/EPDM‐g‐MAH ternary blends, the dispersed phase morphology of the maleated elastomer was hardly affected by the addition of nylon 11, whereas the reduced dispersed phase domains of nylon 11 were observed with the increasing maleated elastomer loading. Furthermore, a core‐shell structure, in which nylon 11 as a rigid core was surrounded by a soft EPDM‐g‐MAH shell, was formed in the case of 10 wt % nylon 11 and higher EPDM‐g‐MAH concentration. In general, the results of mechanical property measurement showed that the ternary blends exhibited inferior tensile strength in comparison with the PP matrix, but superior toughness. Especially low‐temperature impact strength was obtained. The toughening mechanism was discussed with reference to the phase morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
针对PP/EPDM动态硫化中有机过氧化物交联剂A用量对试样拉伸,弯曲和冲击等性能所产生的较大的影响,采用偏光显微镜研究了不同交联剂A用量下动态硫化PP/EPDM中连续相PP的晶体结构和分散相EPDM的形态结构特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号