首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nafion® membranes were modified via in situ, catalyzed sol–gel reactions of titanium isopropoxide to form titania particles in the polar acid domains. FTIR spectroscopy showed successful intraparticle chemical bond formation with incomplete condensation of TiOH groups. Although such modification can lower membrane fuel cell performance, this study was aimed at reducing membrane degradation without significantly altering performance in the sense of material optimization. These incorporated particles did not change membrane equivalent weight and the water uptake was similar to that of the unmodified Nafion® membrane. Membrane dimensional stability, mechanical properties, and ability to withstand contractile stresses associated with humidity change at 80°C and 100% RH were improved. An open circuit voltage (OCV) accelerated degradation test showed the titania modification held voltage better than the unmodified membrane. Performance deterioration of Nafion® after the OCV test was much higher than that of the modified membrane and the fluoride emission of the latter was lower. The degraded Nafion® membrane failed when subjected to creep, whereas the modified membrane remained intact with significantly low deformation. This inorganic modification offers a simple way to enhance membrane durability by reducing both physical and chemical degradation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Membrane electrode assemblies (MEAs) based on radiation‐grafted proton exchange membranes developed at PSI have shown encouraging performance in the past in hydrogen and methanol fuelled polymer electrolyte fuel cells. In this study, the effect of the pre‐treatment of crosslinked radiation‐grafted FEP membranes prior to lamination with the electrodes on the performance of the MEAs was investigated. Two approaches were assessed separately and in combination: (1) the impregnation of the radiation‐grafted membranes with solubilised Nafion®, and (2) the use of a swollen vs. dry membrane. It is found that the combination of coating the membrane with Nafion® ionomer and hot‐pressing the MEA with the membrane in the wet state produce the best single cell performance. In the second part of the study, the durability of an MEA, based on a radiation‐grafted FEP membrane, was investigated. The performance was stable for 4,000 h at a cell temperature of 80 °C. Then, a notable degradation of the membrane, as well as the electrode material, started to occur as a consequence of either controlled or uncontrolled start‐stop cycles of the cell. It is assumed that particular conditions, to which the cell is subjected during such an event, strongly accelerate materials degradation, which leads to the premature failure of the MEA.  相似文献   

3.
This study is an evaluation of the effectiveness of the flexography printing process for manufacturing catalyst‐coated membranes (CCMs) for use in proton exchange membrane fuel cells (PEMFCs). Flexography is a maskless and continuous process that is used in large‐scale production with water‐based inks to reduce the cost of production of PEMFC components. Unfortunately, water has undesirable effects on the Nafion® membrane: water wets the membrane surface poorly and causes the membrane to bulge outwards significantly. Membrane printability was improved by pre‐treating membrane samples by water immersion for short periods (<2 min). This pre‐treatment was used to control the membrane deformation before printing to limit the impact of the ink transfer. Water and ink drop deposition experiments were performed to estimate the liquid‐air‐Nafion® apparent contact angle and the locally induced membrane deformation. Despite the short immersion times used in the tests, the immersion pre‐treatment appeared to induce structural modifications that enhanced both the membrane wettability and the dimensional stability. Flexography printability tests were performed on these treated membranes and showed that the dimensional instability of the Nafion® membrane was the critical parameter for limiting the ink transfer. The immersion pre‐treatment improved the printability of the Nafion® membranes, which were used to fabricate cathodes that were tested in an operational fuel cell.  相似文献   

4.
A novel sulfonated polyimide/chitosan (SPI/CS) composite membrane was prepared from self‐made SPI (50% of sulfonation degree) through an immersion and self‐assembly method, which was successfully applied in vanadium redox flow battery (VRB). The proton conductivity of SPI/CS composite membrane is effectively improved compared to the plain SPI membrane. The VO2+ permeability coefficient across SPI/CS composite membrane is 1.12 × 10?7 cm2 min?1, which is only one tenth of that of Nafion® 117 membrane. Meanwhile, the proton selectivity of SPI/CS composite membrane is about eight times higher than that of Nafion® 117 membrane. In addition, the oxidative stability SPI/CS composite membrane is superior to that of pristine SPI membrane. The VRB single cell using SPI/CS composite membrane showed higher energy efficiency (88.6%) than that using Nafion® 117 membrane, indicating that SPI/CS composite membrane is a promising proton conductive membrane for VRB application. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
α‐Pinene enantiomers were sorbed in Nafion® membranes. The membranes included a commercial extruded Nafion® 115 membrane as well as membranes prepared by casting a Nafion® solution, evaporating the solvent, and a thermal treatment at different temperatures. The microstructure of membranes was studied by small‐angle and wide‐angle X‐ray scattering, and magic‐angle spinning nuclear magnetic resonance spectroscopy. The change of membrane weight during the sorption process was determined with a sorption microbalance. Noticeable differences concerning the sorption behavior of the various membranes could be stated. The sorption of (+)‐α‐pinene and (?)‐α‐pinene in an extruded Nafion® membrane turned out to be rather low.  相似文献   

6.
A direct borohydride fuel cell (DBFC) employing a polyvinyl alcohol (PVA) hydrogel membrane and a nickel‐based composite anode is reported. Carbon‐supported platinum and sputtered gold have been employed as cathode catalysts. Oxygen, air and acidified hydrogen peroxide have been used as oxidants in the DBFC. Performance of the PVA hydrogel membrane‐based DBFC was tested at different temperatures and compared with similar DBFCs employing Nafion® membrane electrolytes under identical conditions. The borohydride–oxygen fuel cell employing PVA hydrogel membrane yielded a maximum peak power density of 242 mW cm–2 at 60 °C. The peak power densities of the PVA hydrogel membrane‐based DBFCs were comparable or a little higher than those using Nafion® 212 membranes at 60 °C. The fuel efficiency of borohydride–oxygen fuel cell based on PVA hydrogel membrane and Ni‐based composite anode was found to be between 32 and 41%. The cell was operated for more than 100 h and its performance stability was recorded.  相似文献   

7.
Nafion® is the polymer electrolyte membrane most used in fuel cells (PEMFC), however Nafion® presents some limitations due to the water loss with increasing temperature. In this work is presented the study of the molecular dynamics in modified Nafion®/ionic liquids (IL) cations membranes with increasing temperature, by proton NMR relaxometry (1H NMRD). Three Nafion® membranes modified with Phenyltrimethylammonium (TMPA+), 1‐n‐butyl‐3‐methylimidazolium (BMIM+) and n‐dodecyltrimethylammonium (DTA+) IL cations were considered. This study allowed the evaluation of the effect of the IL cations incorporation in Nafion® membranes and to assess the degree of confinement of the IL cations in the membranes matrix in relation with the water content. Thermogravimetry analysis was also performed to study the water loss with increasing temperature of the Nafion®/IL cations membranes. It was possible to establish a correlation between the water content and the IL cations self‐diffusion coefficients. The sequential order of the hydration level obtained for the studied systems was Nafion®/DTA+>Nafion®/BMIM+ ≳ Nafion®/H+>Nafion®/TMPA+, while the water loss follows the sequence Nafion®/H+>Nafion®/BMIM+∼Nafion®/DTA+>Nafion®/TMPA+. The Nafion®/BMIM+ presented the largest temperature variation of both the self‐diffusion coefficient and the hydration conditions. In terms of PEMFCs efficiency, the Nafion®/DTA+ modified membrane seems to offer the largest and stable hydration conditions with temperature.  相似文献   

8.
A sulfophenylated polysulfone (PSU‐sph), carrying 0.8 sulfonic acid units per repeating unit of the polymer, is evaluated as a membrane electrolyte for DMFC applications. The liquid uptake, methanol transport characteristics, electrolyte conductivity, and fuel cell performance are investigated. The methanol transport and DMFC performance results are compared to those of Nafion® 117. The PSU‐sph membrane investigated shows superior qualities with regard to methanol crossover, with a methanol permeability of approximately 25% compared to that of Nafion®. The conductivity was measured to be 15% compared to that of Nafion®. However, this could not fully account for the internal resistance of the cell, implying that the contact resistance between the electrodes and electrolyte is higher when PSU‐sph is used, probably because the electrodes are developed for use with Nafion® membranes. The stability of the PSU‐sph membrane seems promising, with very low degradation observed over a period of 72 hours. It was concluded that although the mass transport properties of the PSU‐sph membrane sample investigated were superior, it could not match the performance of Nafion® 117 in a DMFC application. However, a higher degree of sulfonation may have a significant positive effect on cell performance. The results also showed that a fully intergrated MEA is needed to fully assess new menbrane materials.  相似文献   

9.
10.
This study investigates the sorption and transport properties of hydrocarbon membranes based on poly(vinyl alcohol) network and poly(styrene sulfonic acid‐co‐maleic acid) (PSSA‐MA). The water and methanol self‐diffusion coefficients through an 80 wt % PSSA‐MA interpenetrating SIPN‐80 membrane measured 3.75 × 10?6 and 5.47 × 10?7 cm2/s, respectively. These results are lower than the corresponding values of Nafion® 115 (8.89 × 10?6 cm2/s for water and 8.63 × 10?6 cm2/s for methanol). The methanol permeability of SIPN‐80 membrane is 4.1 × 10?7 cm2/s, or about one‐fourth that of Nafion® 115. The difference in self‐diffusion behaviors of Nafion® 115 and SIPN‐80 membranes is well correlated with their sorption characteristics. The solvent uptake of Nafion® 115 increased as the methanol concentration increased up to a methanol mole fraction of 0.63, and then decreased. However, the solvent uptake of the SIPN‐80 membranes decreased sluggishly as the methanol concentration increased. The λ values of water and methanol (i.e., λ and λ) in Nafion® 115 are quite close, indicating no sorption preference between water and methanol. In contrast, the λ value is only one‐third λ for a SIPN‐80 membrane. Accordingly, the SIPN membranes are regarded as candidates for direct methanol fuel cell applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Previous work showed the pertinence of using grafted porous silicon as the proton exchange membrane for miniature fuel cells. One of the limitations was the membrane‐electrodes assembly, which required an ionomer, in the current study a 5% Nafion®‐117 solution, to ensure a proton‐conducting link between the commercial carbon cloth electrodes and the membrane. Here, new developments for this fuel cell, with a totally Nafion®‐free process, are reported. The Pt catalyst is sputtered and electrodeposited onto the surface of the proton conducting porous silicon membrane. The initial performance of this fuel cell is shown and demonstrates the validity of the technique.  相似文献   

12.
The grafting of a phenate bearing sulfonate group in solution onto commercially available poly(VDF‐co‐HFP) copolymers, where VDF and HFP stand for vinylidene fluoride and hexafluoropropene, respectively, is presented. This reaction leads to novel fluoropolymers, bearing aryl sulfonic acid side functions, which are fuel cell membrane precursors. A mechanism similar to the grafting of bisphenol onto VDF‐containing copolymers is discussed. First, the sulfonate phenate is modified to give the didecyldimethylammonium bromide sulfonate phenate salt, in order to promote the substitution onto a fluorine atom in VDF unit adjacent to one HFP unit onto a fluorine atom in the copolymer. The substitution of this salt onto the fluorinated copolymer yields low molar percentages of grafted phenate, ranging from 1.8 to 5.1 mol‐%, whereas it reaches values up to 13 mol‐% grafting when the NH2‐CH2‐CH2‐S‐CH2‐CH2‐C6H4‐SO3Na amine is used as the grafting agent. NMR characterization is used to monitor the grafting process. The electrochemical properties of the resulting phenate grafted‐poly(VDF‐co‐HFP) copolymer are studied. The theoretical ion exchange capacities are half that of Nafion®. The proton conductivities are also lower than that of Nafion®, although one conductivity measurement reached a value of 5.1 mS cm–1, showing a non‐negligible conductivity. The water uptake is lower than these noted for a sulfonated amine‐grafted copolymer, and is of the same order as that for Nafion®. Finally, it is shown that these novel materials start to decompose above 200 °C, showing a similar thermostability as that of an amino‐containing aryl sulfonate‐grafted poly(VDF‐co‐HFP) copolymer.  相似文献   

13.
Proton exchange membranes consisting of Nafion® and crystallized titania nanoparticles have been developed to improve water‐retention and proton conductivity at elevated temperature and low relative humidity. The anatase‐type titania nanoparticles were synthesized in situ in Nafion solution through sol–gel process and the size of the formed titiania nanoparticles is in the range of 3–6 nm. The formed nanoparticles are well‐dispersed in Nafion solution at the titania concentration of 5 wt %. The glass transition temperature of the formed Nafion‐titania composite membrane is about 20oC higher than that of plain Nafion membrane. At elevated temperature (above 100°C), the Nafion‐titania nanocomposite membrane shows higher water uptake ability and improved proton conductivity compared to pure Nafion membrane. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
A series of sulfonated poly(ether sulfone) (SPES)/silica composite membranes were prepared by sol–gel method using tetraethylorthosilicate (TEOS) hydrolysis. Physico–chemical properties of the composite membranes were characterized by thermogravimetric analysis (TGA), X‐ray diffraction (XRD), scanning electron microscope–energy dispersive X‐ray (SEM–EDX), and water uptake. Compared to a pure SPES membrane, SiO2 doping in the membranes led to a higher thermal stability and water uptake. SEM–EDX indicated that SiO2 particles were uniformly embedded throughout the SPES matrix. Proper silica loadings (below 5 wt %) in the composite membranes helped to inhibit methanol permeation. The permeability coefficient of the composite membrane with 5 wt % SiO2 was 1.06 × 10?7 cm2/s, which was lower than that of the SPES and just one tenth of that of Nafion® 112. Although proton conductivity of the composite membranes decreased with increasing silica content, the selectivity (the ratio of proton conductivity and methanol permeability) of the composite membrane with 5 wt % silica loading was higher than that of the SPES and Nafion® 112 membrane. This excellent selectivity of SPES/SiO2 composite membranes could indicate a potential feasibility as a promising electrolyte for direct methanol fuel cell. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Nafion® membrane blended with polyacrylonitrile nanofibers decorated with ZrO2 was successfully fabricated. The composite membrane showed improved proton conductivity, swelling ratio, thermal and mechanical stability, reduced methanol crossover, and enhanced fuel cell efficiency. The nanocomposite membranes achieved a reduced methanol crossover of 5.465 × 10−8 cm2 S−1 compared to 9.118 × 10−7 cm2 S−1 of recast Nafion® membrane using a 5 M methanol solution at 80°C. The composite membrane also showed an ion conductivity of 1.84 compared to 0.25 S cm−1 recast Nafion® at 25°C. The composite membranes showed a peak power density of 68.7 mW·cm−2 at 25°C, these results show a promising composite membrane for fuel cell application.  相似文献   

16.
Two‐component suspensions of titania and halloysite nanotubes (HNTs) were prepared in ethanol with 0.5 g/L (optimum concentration) of polyethyleneimine (PEI) and different wt% of HNTs. Kinetics of Electrophoretic deposition (EPD) decreased with increasing the HNTs content in suspensions due to their less mobility compared with titania particles. HNTs reinforced the microstructure of coatings and reduced or completely prevented from cracking during drying and heat‐treatment steps. Removal of methylene blue (MB) via adsorption by HNTs coatings was faster than its photocatalytic degradation by titania coating. Dispersion of HNTs (up to ≈30 wt%) in the matrix of titania resulted in the synergistic catalytic effect in MB removal. The synergistic effect was because of the shorter traveling distance of MB molecules adsorbed on HNTs toward the photocatalytic active site of titania particles in composite coatings. However, the synergistic effect was destroyed with increasing the HNTs content in coating. Difference between the amount of MB removed by titania and composite coatings increased at longer times (≥60 minutes). Mass transfer of MB adsorbed on HNTs toward the photocatalytic active sites of adjacent titania particles can compensate the decline in the mass transfer from solution at longer times.  相似文献   

17.
Glycidyl methacrylate (GMA) was pre‐irradiation grafted into ETFE base film of 25 μm thickness up to graft levels of 300%. The grafted films were sulfonated using a mixture of sulfite and bisulfite. FTIR and SEM–EDX analysis of the synthesized films and membranes was performed to confirm the grafting and the sulfonation. A pronounced front mechanism for grafting of GMA into ETFE was found. Regarding ex situ fuel cell relevant properties, conductivities of up to 0.25 S cm–1 were attained. For the first time, fuel cell testing of this type of membrane is reported. These grafted membranes performed comparable to a commercial benchmark membrane (Nafion® 212) and better than a styrene‐based grafted membrane with similar conductivity. Post‐test FTIR analysis showed that a fraction of the grafted chains was lost during the test under constant current conditions, yet the membrane still exhibited superior durability compared to a styrene‐based grafted membrane. Hydrolysis of the methacrylate groups was shown not to be the principle cause of the loss of sulfonic acid groups.  相似文献   

18.
The ionic conductivity of Nafion® 1100 extruded membranes re‐cast from solutions of butan‐1‐ol and propan‐2‐ol is measured in 0.5 mol dm–3 H2SO4 at 295 K, using an immersed, four‐electrode d.c. technique. The general trend is an increasing conductivity for the thicker membranes. Materials which were solution‐cast from butan‐1‐ol yielded the highest conductivity while a series of membranes with lower conductivities (similar to those of an extruded Nafion® 1100 series of membranes) was found using propan‐2‐ol. The conductivity results indicate that membranes manufactured by extrusion and casting from various solvents might have different structures. Differences in the water content and conductivity of the membranes are considered to arise from the impact of processing conditions on the surface and bulk structure of the membranes.  相似文献   

19.
Degradation and durability studies of the short side chain perfluorosulfonic acid ionomer membrane, Aquivion™, of Solvay Specialty Polymers, are described in a fuel cell operation beyond 100 °C. Specific electrochemical accelerated stress tests under a dynamic electric load cycling profile were developed to submit the membrane to hydration–dehydration cycles, while the effect of operation temperature was also investigated to reproduce typical power demands and/or thermal gradient periods likely to be encountered during seasonal variation of a micro‐combined heat and power system. Aquivion™ is a high performance membrane which is shown in this study to sustain operation until 110 °C, higher than was possible with Nafion® under similar conditions. Post‐test observations studies by electron microscopy and ex situ tensile measurements bring to light modifications of membrane thickness and mechanical properties that rationalize an upper operating temperature of 120 °C. Membrane thermal annealing is shown to increase lifetime with the ageing procedures used. A predictive lifetime model is proposed by correlating the estimated lifetime values and the experimental data via a lifetime coefficient.  相似文献   

20.
Two types of membranes, the sulfonated PEEK-WC (poly(oxa-p-phenylene-3,3-phthalido-p-phenylene-oxyphenylene)(SPWC) and Krytox-Si-Nafion® (KSiN) composite membranes are proposed for DMFC applications.The properties based on water uptake, ion exchange capacity, proton conductivity, gas permeability, thermal stabilityand methanol crossover are summarized. The comparative studies on SPWC and Nafion® 117 membranes clarify us that the amorphous sulfonated PEEK-WC polymer shows thermal and mechanical stability with less methanol flux and gas permeability. The membrane also exhibits the increase in water uptake, ion exchange capacity and proton conductivity as sulfuric acid doping agent concentration was increased. The KSiN is unique in term of its miscible hybrid structure of silica particles modified with Nafion® structured Krytox 157 FSL chain (KSi) andNafion®. Based on the KSiN membranes with different KSi content, it was found that when KSi content increased, the reduction of gas permeability, methanol crossover and thermal stability are improved. The composite membrane performs the proton conductivity in the wide range of high temperature (60–130°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号