首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Experiments were conducted using various types of solid particles to investigate the hydrodynamic properties of a gas-liquid-solid spouted bed with a draft tube. The hydrodynamic properties under study include flow modes, pressure profile and pressure drop, bubble penetration depth, overall gas holdup, apparent liquid circulation rate and bubble size distribution. Three flow modes were classified: a packed bed mode, a fluidized bed mode and a circulated bed mode. It was found that the friction factor accounting for the friction loss in the bed varies linearly on a logarithmic scale with the Reynolds number defined based on the apparent liquid circulation rate. The bubble penetration depth in the annular region, overall gas holdup and apparent liquid circulation rate increase with an increase in gas or liquid velocity. At high gas flow conditions an optimal solids loading exists which yields a maximum apparent liquid circulation rate. A model was proposed to describe the liquid circulation behaviour in the draft tube three-phas spouted bed. The average bubble size in the draft tube region is higher than that in the annular region for both the dispersed bubble regime and the coalesced bubble regime in the draft tube region.  相似文献   

2.
The optical fiber probe has been for the first time applied to investigate the hydrodynamics and gas‐phase distribution at high gas/liquid ratios in a two‐phase flow monolith bed with 0.048 m diameter and 400 cpsi. Local hydrodynamic parameters including gas holdup, bubble frequency, bubble velocity, and bubble length in single channels were measured by 16 inserted single‐point optical fiber probes within the bed under a nozzle as the liquid distributor. The following findings are reported. (1) The optical fiber probe can be used as an efficient and convenient technique for measuring local hydrodynamic parameters inside the channels of a monolith bed; (2) within the range of high gas/liquid ratios under which experiments were conducted, churn flow regime occurred. In this regime, the monolith bed radial distribution of gas holdup, bubble frequency, bubble velocity, and bubble length is nonuniform in nature. © 2013 American Institute of Chemical Engineers AIChE J 60: 740–748, 2014  相似文献   

3.
The hydrodynamic behavior of an external loop airlift slurry reactor (ALSR) with and without a resistance-regulating element was studied with a fiber optic probe and ultrasound Doppler velocimetry. The influences of the superficial gas velocity and solid holdup on the global gas holdup and radial profiles of the suspension circulation velocity in the downer and of gas holdup, bubble size, and bubble rise velocity in the riser were studied. Local measurements allow a better understanding of the flow behavior in the reactor and can be used for CFD modeling and validation. Experimental results show that the resistance-regulating element increases the gas holdup and decreases the suspension circulation velocity, indicating that an optimum design of the flow resistance is needed to obtain the maximum gas-liquid volumetric mass transfer coefficient for a specific superficial gas velocity. A high superficial gas velocity and low solid holdup are favorable for increased uniformity of the radial profile of the gas holdup and bubble rise velocity. Hydrodynamic models that predict the gas holdup and suspension circulation velocity were developed for an ALSR with and without a resistance-regulating element. Good agreement was obtained between measured and predicted values.  相似文献   

4.
The hydrodynamic behavior of an external loop airlift slurry reactor (ALSR) with and without a resistance-regulating element was studied with a fiber optic probe and ultrasound Doppler velocimetry. The influences of the superficial gas velocity and solid holdup on the global gas holdup and radial profiles of the suspension circulation velocity in the downer and of gas holdup, bubble size, and bubble rise velocity in the riser were studied. Local measurements allow a better understanding of the flow behavior in the reactor and can be used for CFD modeling and validation. Experimental results show that the resistance-regulating element increases the gas holdup and decreases the suspension circulation velocity, indicating that an optimum design of the flow resistance is needed to obtain the maximum gas-liquid volumetric mass transfer coefficient for a specific superficial gas velocity. A high superficial gas velocity and low solid holdup are favorable for increased uniformity of the radial profile of the gas holdup and bubble rise velocity. Hydrodynamic models that predict the gas holdup and suspension circulation velocity were developed for an ALSR with and without a resistance-regulating element. Good agreement was obtained between measured and predicted values.  相似文献   

5.
The hydrodynamic performance of three internal airlift reactor configurations was studied by the Eulerian–Eulerian k–ε model for a two‐phase turbulent flow. Comparative evaluation of different drag and lift force coefficient models in terms of liquid velocity in the riser and downcomer and gas holdup in the riser was highlighted. Drag correlations as a function of Eötvös number performed better results in comparison to the drag expressions related to Reynolds number. However, the drag correlation as a function of both Reynolds and Eötvös numbers fitted well with experimental results for the riser gas holdup and downcomer liquid velocity in configurations I and II. Positive lift coefficients increase the liquid velocity and decrease the riser gas holdup, while opposite results were obtained for negative values. By studying the effects of bubble size and their shape, the smaller bubbles provide a lower liquid velocity and a gas holdup. The effects of bubble‐induced turbulence and other non‐drag closure models such as turbulent dispersion and added mass forces were analysed. The gas velocity and gas holdup distributions, liquid velocity in the riser and downcomer, vectors of velocity magnitude and streamlines for liquid phase, the dynamics of gas holdup distribution and turbulent viscosity at different superficial gas velocities for different reactor configurations were computed. The effects of various geometrical parameters such as the draft tube clearance and the ratio of the riser to the downcomer cross‐sectional area on liquid velocities in the riser and the downcomer, the gas velocity and the gas holdup were explored. © 2011 Canadian Society for Chemical Engineering  相似文献   

6.
The local hydrodynamic properties of the gas phase in an internal-loop airlift reactor were investigated in this study. The hydrodynamic properties including gas holdup, bubble velocity and bubble chord length were measured by dual electrical resistivity probes. The chord length distribution was then transformed to the bubble size distribution by modeling the bubbles as ellipsoids. It was found that the gas holdup increased with decreasing bubble velocity. In addition, most bubbles tended to rise along the riser central axis. Thus, the gas holdup in the axis was higher. The bubble size, bubble velocity and gas holdup were relatively constant in the axial direction of the riser except in the zones near the gas sparger and the gas–liquid separator. The bubble velocity became slower when the bubbles approached the gas–liquid separator. Moreover, the bubble size and bubble velocity for the three-phase system were relatively insensitive to the radial direction compared to those for the two-phase system. It was also found in this study that the bubble rise velocity and bubble size for the three-phase system were lower than that for the two-phase system. However, the gas holdup for the three-phase system were higher than that for the two-phase system due to bubble breakage caused by the solid particles.  相似文献   

7.
三相环流反应器流体力学行为   总被引:4,自引:3,他引:4       下载免费PDF全文
气升式三相环流反应器综合了鼓泡塔和机械搅拌釜的优良性能,具有结构简单、无机械传动部件、易密封、造价低、容易实现工业放大等优点,在石油、化工、电化学和生物化工等领域得到了广泛应用.随着能源形势的日趋紧张,环流反应器在液相法合成甲醇、浆态床一步法合成二甲醚、煤液化等过程中的应用得到许多研究人员的重视,并取得了重要的研究进展.由于目前对其内部流动行为尚缺乏系统的认识,进行工业设计和操作过程中仍显理论指导不足  相似文献   

8.
基于径向力平衡的鼓泡塔二维流体力学模型   总被引:1,自引:2,他引:1       下载免费PDF全文
李兆奇  王丽军  管小平  成有为  李希 《化工学报》2014,65(11):4222-4230
提出了一种鼓泡塔二维轴对称流体力学模型,模型中将气泡所受的升力以及湍动扩散力作为形成塔内气含率稳定分布的主要机制.采用Fluent 6.3流体力学软件求解模型,能得到稳定的二维流场,气含率与液速分布与实验值吻合良好,模型能准确反映表观气速(0.12~0.62 m·s-1)以及塔径(ø200 mm、ø500 mm、ø800 mm)对流型的影响.利用该模型对更大直径鼓泡塔的流动参数进行了预测,结果与文献给出的经验关联式相符.  相似文献   

9.
A new model for the liquid circulation rates in airlift reactor (ALR) is presented. The model is based on the energy balance for the flow loop (riser, turn riser‐downcomer, downcomer, and turn downcomer‐riser) coupled with a drift flux theory of two‐phase flow gas‐liquid system, considering a bubbly flow regime. The predicted values of the liquid circulation rates by the developed model are compared with experimental results performed in a 22 dm3 internal loop airlift reactor and with the results obtained in the literatures. The proposed model predicted the experimental results very well. Slip velocity relationship based on the drift flux model was proposed; including the gas holdup, bubble size and the liquid physical properties. The predicted slip velocity was similar to that obtained from the literature. The study revealed that appropriate arrangements of internal bioreactor parts can positively influence the liquid circulation velocity at the same energy consumption. The proposed models are useful in the design; scale up and characterization of the internal loop airlift reactors, and provides a direct method of predicting hydrodynamic behaviour in gas‐liquid airlift reactors.  相似文献   

10.
The local hydrodynamic behaviours in an external loop airlift slurry reactor, including the gas holdup, bubble rise velocity, bubble size, were measured with a fibre optic probe. The liquid circulation velocity was measured with an ultrasound Doppler velocimetry. Two‐dimensional simulations were carried out in the framework of Two‐Fluid formulation coupled with a k‐? turbulence model. The lateral forces and interphase turbulence were taken into account and good agreement between the experimental and simulation results was obtained. The simulations show that the lateral forces and interphase turbulence have noticeable influence and should be included in the CFD model.  相似文献   

11.
Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empirical correlations for gas holdup and liquid velocity are proposed to ease the reactor design and scale-up.Different bubble circulation regimes were displayed in the first(lower) and second(upper) stages.Increasing superficial gas velocity and solid loading can promote regime transition of the second stage,and the gas holdup of the second stage is higher than that of the lower stage.In addition,the effects of solid loading on bubble behaviour are experimentally investigated for each stage.It is found that bubble size in the downcomer decreases with the presence of solid particles,and bubble size distribution widens under higher superficial gas velocity and lower solid loading.  相似文献   

12.
The role of the gas–liquid separator on hydrodynamic characteristics in an internal‐loop airlift reactor (ALR) was investigated. Both gas holdup and liquid velocity were measured in a 30 dm3 airlift reactor with two different head configurations: with and without an enlarged separator. A magnetic tracer method using a neutrally buoyant magnetic particle as flowfollower was used to measure the liquid velocity in all sections of the internal‐loop airlift reactor. Average liquid circulation velocities in the main parts of the ALR were compared for both reactor configurations. At low air flow rates the separator had no influence on gas holdup, circulation velocity and intensity of turbulence in the downcomer and separator. At higher superficial air velocities, however, the separator design had a decisive effect on the hydrodynamic parameters in the downcomer and the separator. On the other hand, the gas holdup in the riser was only slightly influenced by the separator configuration in the whole range of air flow. Circulation flow regimes, characterising the behaviour of bubbles in the downcomer, were identified and the effect of the separator on these regimes was assessed. © 2001 Society of Chemical Industry  相似文献   

13.
在空气-水两相多室气升式环流反应器(MALR)中,采用欧拉欧拉两相流模型对扇形反应室内气液两相流动过程进行了数值模拟研究,考察了上升室的气含率、液体速度随表观气速的变化,最后用实验数据对模拟结果进行了验证.结果表明,某一上升室气含率受该室表观气速的影响较大,与另一上升室表观气速的影响较小;循环液体与上升室流体流动型式有关;气含率和循环液速的模拟值与实验值的平均相对误差分别为5.36%和8.28%;说明了应用数值模拟方法研究MALR流动特性的可行性.  相似文献   

14.
Experimental investigations were carried out in model external-loop airlift reactors. Two reactors of laboratory scale (riser liquid height ranged between 1.16-1.56 m, riser diameter 0.03 m, AD/AR ratio between 0.111-1,000, total liquid volume VT = (1.189-2.446).10-3m3) and pilot-plant scale (riser liquid height of 4.4 and 4.7 m, respectively, riser diameter 0.200 m, AD/AR ratio of 0.1225 and 0.040 m, total liquid volume, VT = (0.144-0.170) m3) were used.

The influences of reactor geometry characterized by some parameter as: AD/AR ratio, liquid height in riser and downcomer and liquid height in gas separator, together with the amount of introduced air, on the basic hydrodynamic design parameters: gas holdup and liquid circulation velocity were analysed.

The influence of gas sparger design on gas holdup and liquid velocity was found to be negligible.

The experimental liquid circulation velocity was correlated using a simplified form of the energy balance in airlift reactors, valid for external-loop airlift reactors with almost complete phase separation at the top.

An original dimensionless correlation for gas holdup prediction involving superficial velocities of gas and liquid, cross sectional areas, dispersion height, riser diameter, as well as Froude number, was obtained.  相似文献   

15.
气升式环流反应器在不同体系下的循环液速和局部气含率   总被引:12,自引:1,他引:12  
在气升式环流反应器中,分别研究了空气—水、空气-0.1%乙醇水溶液和空气-水-活性污泥体系中的循环液速以及气含率随操作条件的变化规律。实验结果表明,循环液速随着表观气速的增加而增大,不同体系中的循环液速差别不大;导流筒内、外不同高度处的局部气含率均呈自下向上增大的趋势,且导流筒内部气含率高于导流筒外部的气含率。体系的聚并特性对平均气含率和局部气含率有较大影响。  相似文献   

16.
Accurate prediction of dispersed phase droplet behavior is crucial to the design and scaling‐up of an extraction column. In this article, the dispersed droplet velocity algorithm and the diameter algorithm in a liquid–liquid two‐phase flow have been developed based on the bubble velocity model in gas–liquid two‐phase flow of Lucas [Measurement Science & Technology. 749, 758(2005)] and Shen [International Journal of Multiphase Flow. 593, 617(2005)]. Hydrodynamic characteristics, including droplet diameter, holdup and droplet velocity, were measured using a self‐made four‐sensor optical fiber probe in a 38 mm‐diameter pulsed sieve‐plate extraction column. Water and kerosene were used as continuous and dispersed phases, respectively. The influences of the pulsed intensity, the continuous and dispersed phase superficial velocities on the hydrodynamic characteristics were investigated. The experimental results show that it is reliable to use a four‐sensor optical probe to measure the hydrodynamic characteristics of a pulsed extraction column. © 2016 American Institute of Chemical Engineers AIChE J, 63: 801–811, 2017  相似文献   

17.
To determine bubble rising and descending velocity simultaneously, a BVW‐2 four‐channel conductivity probe bubble parameters apparatus and its analysis are used in gas‐liquid and gas‐liquid‐solid bubble columns. The column is 100 mm in internal diameter and 1500 mm in height. The solid particles used are glass beads with an average diameter of 17.82 μm, representing typical particle size for catalytic slurry reactors. The effects of superficial gas velocity (1.0 cm/s ≤ Ug 6.4 cm/s), solid holdup (0 % ≤ ?s 30 %), and radial location (r/R = 0, 0.4, and 0.7) on bubble velocity distributions are determined. It is found that increasing Ug can increase the velocity of bubbles but do not exert much influence on bubble velocity distribution. Solid holdup mainly affects the distribution of bubble velocity while the radial direction affects bubble velocity distribution only slightly. The ratio of descending bubbles to rising bubbles increases from the bubble column center to the wall. It can be proved experimentally that large bubbles do not always rise faster than small bubbles at higher Ug (for example 6.4 cm/s).  相似文献   

18.
利用计算流体力学(CFD)数值模拟方法.采用Euler法双流体模型研究了表观气速对气液两相气升式环流反应器的液体循环速率和气含率的影响.实验结果与数值模拟结果吻合较好.结果表明.气含率和液体速率在反应器内分布不均匀,气含率在相同的径向位置变化很小,液体速率随着表观气速的增加而增加.  相似文献   

19.
The laser Doppler anemometer (LDA) and conductivity probes were used for measuring the local hydrodynamic performances such as gas holdup and liquid velocity in a lab-scale gas–liquid–TiO2 nanoparticles three-phase bubble column. Effects of operating parameters on the local gas holdup and liquid velocity were investigated systematically. Experimental results showed that local averaged axial liquid velocity and local averaged gas holdup increased with increasing superficial gas velocity but decreased with increasing TiO2 nanoparticles loading and the axial distance from the bottom of the bubble column. A three-dimensional computational fluid dynamic (CFD) model was developed in this paper to simulate the structure of gas–liquid–TiO2 nanoparticles three-phase flow in the bubble column. The time-averaged and time-dependent predictions were compared with experimental data for model validation. A successful prediction of instantaneous local gas holdup, gas velocity, and liquid velocity were also presented.  相似文献   

20.
Micro‐bubbles were dispersed in the bubble column with draft tube, and the length and diameter of draft tube were changed. The flow characteristics in air–water system were measured. Ozone gas and methylene‐blue aqueous solution were used, and the decomposition performance was examined. With increasing draft tube length, both the gas holdup and liquid velocity in the annular section increased. When the diameter ratio of draft tube to column was about 0.5, both the gas holdup and liquid circulation flow rate had maxima. For the decomposition by using ozone, the installation of draft tube enhanced the mass transfer and decomposition performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号