首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanical stability of titania (TiO2) nanofibers was improved by fabricating TiO2/poly(dimethyl siloxane) (PDMS) composite fibers using a combination of hybrid electrospinning and sol‐gel methods, followed by heat treatment at 250°C for 3 h. The compositions (90/10, 80/20, and 70/30, w/w) of the TiO2/PDMS composite fibers were varied by adjusting the flow rate of the PDMS sol with the flow rate of TiO2 sol fixed. There was no significant change in morphology and average diameter of the as‐spun TiO2/PDMS fibers after heat treatment. Both the tensile strength and modulus of the TiO2/PDMS composite fibers increased gradually with increasing PDMS content up to 30 wt %. In addition, from the photo‐degradation reaction of methylene blue, the photocatalytic activity of TiO2/PDMS composite fibers was strongly dependent on the TiO2 content (%) in the composite fibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
The production of high modulus and high strength poly(ethylene terephthalate) fibers was examined by using commercially available melt‐spun fibers with normal molecular weight (intrinsic viscosity = 0.6 dL/g). First, molecular weight of as‐spun fibers was increased up to 2.20 dL/g by a solid‐state polymerization, keeping the original shape of as‐spun fibers. Second, the polymerized as‐spun fibers were drawn by a conventional tensile drawing. The achieved tensile modulus and strength of as‐drawn fibers (without heat setting) were 20.0 and 1.1 GPa, respectively. A heat setting was carried out for the as‐drawn fibers. Tensile properties of the treated fibers were greatly affected by the condition of the heat setting. This was related to the increase of sample crystallinity and molecular degradation during the treatments. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1791–1797, 2007  相似文献   

3.
聚酯/液晶聚合物共混纤维的热处理   总被引:3,自引:1,他引:2  
采用X射线衍射法、双折射法以及声速法研究了PET及其与液晶聚合物(LCP)的共混初生纤维以及经过热处理后纤维的结晶结构和取向结构,并用应力-应变(S-S)法测定其断裂强度和初始模量。结果表明,LCP的加入使初生纤维取向度和结晶度均下降,而喷头拉伸率增大则使共混初生纤维的结晶度和取向度均提高;由较大喷丝头拉伸率得到的共混纤维经热处理后取向度下降,而结晶度增大;当LCP含量大于或等于10%时,经热处理后共混纤维取向度下降;纤维210℃热处理后的晶粒尺寸明显大于180℃处理的,且前者的纤维各晶面的晶粒尺寸随着LCP加入均有增大;纯PET纤维经热处理后力学性能提高,而PET/LCP共混纤维热处理前后力学性能则呈较复杂的变化。  相似文献   

4.
Interest in protection against solar ultraviolet radiation (UVR) among the general public in the world has been increasing steadily. Poly(ethylene terephthalate) (PET) was blended with UVR‐protection agents and was spun into modified fibers to provide the property of UVR protection. Investigation of this property using a UV spectrophotometer showed that the modified PET fabrics could be resistant to UVR more than 90% in the UV‐B band. The treatment of aqueous alkali on the surface of the fibers to improve the comfortable feel had little influence on the property of UVR protection. Scanning electron microscopy was employed to observe the surface morphology of the fibers. Also, the modified fibers had good heat insulation property and the mechanical properties of the fibers were measured. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1180–1185, 2003  相似文献   

5.
Historically, polyaniline (PANI) had been considered an intractable material, but it can be dissolved in some solvents. Therefore, it could be processed into films or fibers. A process of preparing a blend of conductive fibers of PANI/poly‐ω‐aminoundecanoyle (PA11) is described in this paper. PANI in the emeraldine base was blended with PA11 in concentrated sulfuric acid (c‐H2SO4) to form a spinning dope solution. This solution was used to spin conductive PANI / PA11 fibers by wet‐spinning technology. As‐spun fibers were obtained by spinning the dopes into coagulation bath water or diluted acid and drawn fibers were obtained by drawing the as‐spun fibers in warm drawing bath water. A scanning electron microscope was employed to study the effect of the acid concentration in the coagulation bath on the microstructure of as‐spun fibers. The results showed that the coagulating rate of as‐spun fibers was reduced and the size of pore shrank with an increase in the acid concentration in the coagulation bath. The weight fraction of PANI in the dope solution also had an influence on the microstructure of as‐spun fibers. The microstructure of as‐spun fibers had an influence on the drawing process and on the mechanical properties of the drawn fibers. Meanwhile, the electrically conductive property of the drawn fibers with different percentage of PANI was measured. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1458–1464, 2002  相似文献   

6.
Electrospinning was used to fabricate mats of poly(vinyl alcohol) (PVA; Mw = 72,000 Da, degree of hydrolysis ≈ 97.5–99.5) nanofibers from PVA solutions in reverse osmotic water. The effects of solution concentration, applied electrical potential, sonication, and collection distance on morphological appearance and diameters of the as‐spun fiber mats as well as those of the individual fibers were carefully investigated mainly by scanning electron microscopy. The effect of the distance from the center of the as‐spun fiber mat on morphological appearance and diameters of the as‐spun fibers was also investigated. The mechanical integrity of some as‐spun PVA fiber mats was also investigated. At all concentrations and applied electrical potentials investigated, the average diameters of the as‐spun PVA fibers ranged between 85 and 647 nm. The use of sonication to prepare a PVA solution caused the viscosity of the solution to decrease; hence, the observed decrease in the average diameters of the as‐spun fibers and the average diameters of the as‐spun fibers were practically the same throughout the as‐spun fiber mat. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Since the success of a production process depends on its good planning and having a clear plan from the raw materials until the final product, the focus of this research is in modeling of the extrusion temperature profile of as‐spun aliphatic‐aromatic co‐polyester fibers. The extrusion temperature profile affects the properties, productivity and product cost. In this work, as‐spun aliphatic‐aromatic co‐polyester fibers were spun under a fractional factorial design as a function of the extrusion temperature profile using appropriate statistical methods. The influence of the extrusion temperature profile on the optical birefringence of the as‐spun fibers was characterized. From the obtained results the overall orientation of the spun filaments has been modeled. For measuring the birefringence, an interferometric technique was employed and its microinterferograms were included for illustration. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

8.
Poly(2‐cyano‐p‐phenylene terephthalamide) (CY‐PPTA) was obtained by the polycondensation of terephthaloyl dichloride and 2‐cyano‐p‐phenylene diamine in the mixture of N‐methyl‐2‐pyrrolidone (NMP) and calcium chloride (CaCl2). Washing the polymerized product with water and drying at the elevated temperature inevitably left a small amount of polymerization residues which could be eliminated only by additional washing with acetone. The thermogravimetric and 1H‐/13C‐NMR analyses revealed that the residues were largely composed of NMP which existed as a complex with the polymer. The complex was broken up between 200 and 300 °C and evolved 5 wt % of gaseous products, which had an adverse effect on the physical properties of as‐spun CY‐PPTA fibers obtained by dry jet‐wet spinning. The heat treatment of the as‐spun fibers including residual NMP exhibited some porous morphology on the fiber surface due to the evolved gases. However, the existence of the residual NMP had little effect on the intrinsic viscosity and liquid crystalline phase behavior of the polymer. Both rheological and optical properties exhibited the critical concentration at 3 wt % with the clear schlieren texture of nematic liquid crystalline phase. The inclusion of residual NMP decreased dynamic viscosity and yield stress. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43672.  相似文献   

9.
We undertook this study to suggest the optimal spinning process conditions that provide a proper range of tenacity and biodegradability in textile fibers. The effect of melt‐spinning speed and heat treatment on the mechanical properties and biodegradability of poly(lactic acid) (PLA) fibers were investigated. PLA was spun at a high spinning speed of 2000–4000 m/min, and each specimen was heat‐treated. Mechanical properties were estimated by measurement of the breaking stress, and the degree of crystallinity was evaluated with wide‐angle X‐ray scattering. Biodegradability was estimated from the decreases in breaking stress, weight loss, and degree of crystallinity after soil burial. The results of the experiment reveal that heat treatment of the PLA fibers increased the breaking stress and crystallinity. With increasing spinning speed, breaking stress and crystallinity also increased. An increase in spinning speed was more effective than an increase in heat treatment for enhancing the breaking stress within the range of this study. From the soil burial test, it was revealed that an increase in spinning speed and heat treatment decreased the biodegradability of the fibers. X‐ray analysis of the soil‐buried fibers showed that fibers with higher crystallinities began to degrade more slowly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3099–3104, 2007  相似文献   

10.
The present contribution reports the fabrication and characterization of ultrafine polyacrylonitrile (PAN) fibers by electrospinning and further development of the as‐spun PAN fibers into ultrafine carbon fibers. The effects of solution conditions (i.e., solution concentration, viscosity, conductivity, and surface tension) and process parameters (i.e., applied electrostatic field strength, emitting electrode polarity, nozzle diameter, and take‐up speed of a rotating‐drum collector) on morphological appearance and average diameter of the as‐spun PAN fibers were investigated by optical scanning (OS) and scanning electron microscopy (SEM). The concentration, and hence the viscosity, of the spinning solutions significantly affected the morphology and diameters of the as‐spun PAN fibers. The applied electrostatic field strength and nozzle diameter slightly affected the diameters of the as‐spun fibers, while the emitting electrode polarity did not show any influence over the morphology and size of the as‐spun fibers. Utilization of the rotating‐drum collector enhanced the alignment of the as‐spun fibers. Within the investigated concentration range, the average diameter of the fibers ranged between 80 and 725 nm. Finally, heat treatment of the as‐spun fibers with their average diameter of about 450 nm was carried out at 230 and 1000 °C, respectively. Various characterization techniques revealed successful conversion into carbon fibers with an average diameter of about 250 nm. Copyright © 2006 Society of Chemical Industry  相似文献   

11.
Poly(L ‐lactic acid) (PLA) filaments were spun by melt‐spinning at 500 and 1850 mm?1, and further drawn and heat‐set to modify the morphology of these PLA filaments. PLA yarns were characterized by wide‐angle X‐ray diffraction (WAXD) and sonic method. WAXD reveals that PLA yarns spun at 500 mm?1 are almost amorphous while the PLA filaments spun at 1850 mm?1 have about 6% crystallinity. This is different from PET filaments spun at the same speed that have almost no crystallinity. Both drawn‐ and heat‐set PLA filaments showed much higher crystallinity (60%) than do as‐spun fibers produced at 500 and 1850 mm?1 speed, which is also higher than the usual heat‐set PET yarns. It appears that crystalline orientation rapidly reaches a value in the order of 0.95 at 1850 mm?1 and that drawn‐ and heat‐set yarns have almost the same crystalline orientation values. Molecular orientation is relatively low for as‐spun PLA yarn, and molecular orientation increased to ~0.5 after drawing or heat–setting or both. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1210–1216, 2006  相似文献   

12.
A new gel‐spinning method was employed to prepare polyacrylonitrile (PAN) fibers from a PAN spinning solution with dimethylsulfoxide and water as a mixed solvent. Aging at 25 °C for 120 min brought the spinning solution to the sol–gel transition and a three‐dimensional gel formed before entering the coagulation bath. The as‐spun fibers from the solution at the sol–gel transition and in the gel state possess a circular cross‐section. Compared with dry‐jet wet‐spun fibers, the gel‐spun fibers have a more compact structure, fewer voids and better mechanical properties after a three‐stage drawing. Moreover, the gel‐spun fibers obtained from the extraction bath have a more homogeneous microstructure and better packed supermolecular structure. The physical properties of the extracted gel‐spun fibers are also better than those of coagulated gel‐spun fibers. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
An immiscible blend of poly(propylene) (PP) with a thermotropic liquid‐crystalline polymer (TLCP, trade name Rodrun LC5000), a copolyester of 80/20 mol ratio of p‐hydroxy benzoic acid and polyethylene terephthalate was prepared in a twin‐screw extruder. The blend extrudate was fabricated as monofilament by using a single‐screw extruder equipped with a fiber line. The as‐spun filament was drawn at 120°C to enhance molecular orientation. Morphology, thermal, tensile, and dynamic mechanical properties of both as‐spun and drawn monofilaments were investigated. Almost continuously long TLCP fibers dispersed in PP matrix were obtained in the composite as‐spun monofilaments. The maximum modulus was found in 15 wt % TLCP/PP composite as‐spun filament, an increase of about 2.4 times that of the as‐spun neat PP. For the drawn filaments, the 10 wt % TLCP/PP composite showed a maximum modulus, an increase of about 1.5 times that of the drawn neat PP. The increase in the moduli was attributed not only to the reinforcement by TLCP fibrils with very high aspect ratio but also to the increases in PP crystallinity and molecular orientation through the drawing process. A remarkable improvement in the dynamic mechanical properties of the composite monofilaments was observed, especially in the high‐temperature region. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90:1337–1346, 2003  相似文献   

14.
Polyglycolic acid (PGA) fibers were prepared by melt‐spinning process in this report. The effects of spinning parameters, such as windup rates and drawn ratio, on the mechanical properties of the fibers were discussed by analyzing the internal stress of as‐spun fibers, axial sound velocity, fiber tenacity, etc. The results showed that windup rate had a slight effect on the macromolecular orientation degree of the as‐spun fibers, which was quite unusual for melt spinning, whereas, the subsequent drawing process effectively increased the macromolecular orientation degree of the PGA fibers and consequently increased the tensile strength of the fibers. Low internal stress of as‐spun fibers obtained at lower windup rate led to higher drawing ratio, and the drawn fibers possessed relatively excellent mechanical properties. As a contrast, higher windup rate resulted in the strong internal stress of the as‐spun fibers, which had a negative influence on the drawing process, and so the tensile strength of the drawn fibers was relatively poor. Therefore, PGA fiber with perfect mechanical performance could be prepared at the technical parameters of lower windup rate and higher drawing multiples as well as slow drawing rate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
Poly(vinylidene difluoride) (PVDF) has been widely used in piezoelectric applications as films and nanofiber mats, but there are limited publications on piezoelectric wet‐spun fibers. In this work, PVDF fibers were prepared using the wet spinning method, and the processing parameters, including the drawing ratio and heat setting temperature, were controlled in the continuous wet spinning system to increase the β‐phase crystallinity of the fibers. In addition, the wet‐spun PVDF fibers were compressed by a rolling press to eliminate voids in the fibers. Then, the compressed PVDF fibers were poled to align the molecular dipoles. The crystal structures of the PVDF fibers were investigated using X‐ray diffraction and Fourier‐transform infrared spectroscopy. Single filament tensile tests were performed to measure the tensile strength of the fibers. The morphologies of the PVDF fibers with respect to the processing parameters were observed by scanning electron microscope (SEM) and polarization optical microscopy. The piezoelectric constant of the prepared PVDF fibers was then measured using a d33 meter. The wet‐spun PVDF fibers showed the highest β‐phase and piezoelectric constants when the drawing ratio and heat setting temperature were 6 and 150 °C, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45712.  相似文献   

16.
Thermoresponsive shape memory (SMP) fibers were prepared by melt spinning from a polyester polyol‐based polyurethane shape memory polymer (SMP) and were subjected to different postspinning operations to modify their structure. The effect of drawing and heat‐setting operations on the shape memory behavior, mechanical properties, and structure of the fibers was studied. In contrast to the as‐spun fibers, which were found to show low stress built up on straining to temporary shape and incomplete recovery to the permanent shape, the drawn and heat‐set fibers showed significantly higher stresses and complete recovery. The fibers drawn at a DR of 3.0 and heat‐set at 100°C gave stress values that were about 10 times higher than the as‐spun fibers at the same strain and showed complete recovery on repeated cycling. This improvement was likely due to the transformation brought about in the morphology of the permanent shape of the SMP fibers from randomly oriented weakly linked regions of hard and soft segments to the well‐segregated, oriented and strongly H‐bonded regions of hard‐segments. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2172–2182, 2007  相似文献   

17.
Textiles, with appropriate light absorbers and suitable finishing methods, can be used as ultraviolet (UV) protection materials. In this study, we investigated the effects of nano‐TiO2 particles on the UV‐protective and structural properties of polypropylene (PP) textile filaments. Master batches of PP/TiO2 nanoparticles were prepared by melt compounding before spinning, and filaments incorporating 0.3, 1, and 3% TiO2 nanoparticles were spun in a pilot melt‐spinning machine. The structural properties of the nanocomposite fibers were analyzed with scanning electron microscopy, X‐ray diffractometry, differential scanning calorimetry, and tensile tests. The UV‐protection factor was determined to evaluate the UV‐protective properties of the filaments. In conclusion, although the structure and mechanical properties of the nanocomposite filaments were slightly affected by the addition of nano‐TiO2, the UV‐protective properties of the PP filaments improved after treatment with nano‐TiO2, and the nanocomposite filaments exhibited excellent UV protection. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
This article reports the results from a study conducted to characterize the frictional properties of friction spun yarns. The aim of the study was to obtain data on the surface mechanical properties of a variety of friction spun yarns. The study was essential as the surface mechanical properties influence the fabric formation, bonding strength, and high‐performance properties of yarns. The yarns used in the study were made from different fibers and were spun at different speeds. The capstan method was used to obtain the friction force values between the yarns and a glass cylindrical rod. The experiment was conducted at different tensions. The results indicate that the friction of friction spun yarns are influenced by different factors such as the type of fiber and tensions applied. The results obtained help to understand the surface mechanical properties of high‐performance yarns and their influence on the performance characteristics of friction spun yarns. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2450–2454, 2003  相似文献   

19.
Biodegradable poly(L ‐lactic acid) (PLLA) fibers were processed by a two‐step melt‐spinning method (melt extrusion and hot draw) from PLLA with three different viscosity‐average molecular weights (494,600, 304,700, and 262,800). Before spinning, the polymer flakes were first milled into powders and dried under vacuum. Viscosity‐average molecular weight of PLLA following the fabrication process was monitored. Tensile properties of as‐spun and hot‐drawn fibers were investigated. Morphology of the PLLA fibers was viewed under a scanning electron microscope. Crystallinity of these fibers was assessed by thermogram analysis of differential scanning calorimetry. Results showed that the extent of decrease in the viscosity‐average molecular weight of PLLA dropped sharply by 13.1–19.5% during pulverization and by 39.0–69.0% during melt‐extrusion. The hot‐draw process in this study had a little effect on the viscosity‐average molecular weight of PLLA. Smoother fibers could be obtained for the die temperature at least 230°C for raw materials with higher crystallinity (more than 75%) and at least 220°C for raw materials with lower crystallinity (about 60%). The as‐spun fibers showed crystallinity of 16.5–22.8% and the value increased to 50.3–63.7% after hot draw. Tensile moduli of the as‐spun fibers were in the range of 1.2–2.4 GPa, which were raised to 3.6–5.4 GPa after hot draw. The final PLLA fibers with 110–160 μm diameters showed tensile strengths of 300–600 MPa. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 251–260, 2001  相似文献   

20.
Polyamide 6 (PA6) gels were prepared by the dissolution of PA6 powder in formic acid with CaCl2 as a complexing agent. The concentration of the polymer was 16% w/v. PA6 fibers were obtained through gel‐spinning, drawing, decomplexation, and heat‐setting processes. The structure and properties of the fibers at different stages were characterized with differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The experiment results indicate that the melting transition of the as‐spun fibers obtained by the extrusion of the PA6/CaCl2/HCOOH solution into a coagulation bath through a die disappeared. A porous structure existed in the as‐spun fibers, which led to poor mechanical properties. Compared with the as‐spun fibers, the melting and glass‐transition temperatures of the decomplexed and drawn fibers retained their original values from PA6, the degree of crystallinity increased, the porous structure disappeared, and the mechanical properties were improved. The maximum modulus and tensile strength obtained from the drawn fibers in this study were 32.3 GPa and 530.5 MPa, respectively, at the maximum draw ratio of 10. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4449–4456, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号