首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
Monoamine oxidase B (MAO‐B) is an important drug target for the treatment of neurological disorders. A series of 6‐nitrobenzothiazole‐derived semicarbazones were designed, synthesized, and evaluated as inhibitors of the rat brain MAO‐B isoenzyme. Most of the compounds were found to be potent inhibitors of MAO‐B, with IC50 values in the nanomolar to micromolar range. Molecular docking studies were performed with AutoDock 4.2 to deduce the affinity and binding mode of these inhibitors toward the MAO‐B active site. The free energies of binding (ΔG) and inhibition constants (Ki) of the docked compounds were calculated by the Lamarckian genetic algorithm (LGA) of AutoDock 4.2. Good correlations between the calculated and experimental results were obtained. 1‐[(4‐Chlorophenyl)(phenyl)methylene]‐4‐(6‐nitrobenzothiazol‐2‐yl)semicarbazide emerged as the lead MAO‐B inhibitor, with top ranking in both the experimental MAO‐B assay (IC50: 0.004±0.001 μM ) and in computational docking studies (Ki: 1.08 μM ). Binding mode analysis of potent inhibitors suggests that these compounds are well accommodated by the MAO‐B active site through stable hydrophobic and hydrogen bonding interactions. Interestingly, the 6‐nitrobenzothiazole moiety is stabilized in the substrate cavity with the aryl or diaryl residues extending up into the entrance cavity of the active site. According to our results, docking experiments could be an interesting approach for predicting the activity and binding interactions of this class of semicarbazones against MAO‐B. Thus, a binding site model consisting of three essential pharmacophoric features is proposed, and this can be used for the design of future MAO‐B inhibitors.  相似文献   

4.
A series of 3‐hydroxy‐3‐phenacyloxindole analogues of isatin were designed, synthesized, and evaluated in vitro for their inhibitory activity toward monoamine oxidase (MAO) A and B. Most of the synthesized compounds proved to be potent and selective inhibitors of MAO‐A rather than MAO‐B. 1‐Benzyl‐3‐hydroxy‐3‐(4′‐hydroxyphenacyl)oxindole (compound 18 ) showed the highest MAO‐A inhibitory activity (IC50: 0.009±0.001 μm , Ki: 3.69±0.003 nm ) and good selectivity (selectivity index: 60.44). Kinetic studies revealed that compounds 18 and 16 (1‐benzyl‐3‐hydroxy‐3‐(4′‐bromophenacyl)oxindole) exhibit competitive inhibition against MAO‐A and MAO‐B, respectively. Structure–activity relationship studies suggested that the 3‐hydroxy group is an essential feature for these analogues to exhibit potent MAO‐A inhibitory activity. Computational studies revealed the possible molecular interactions between the inhibitors and MAO isozymes. The computational data obtained are congruent with experimental results. Further studies on the lead inhibitors, including co‐crystallization of inhibitor–MAO complexes and in vivo evaluations, are essential for their development as potential therapeutic agents for the treatment of MAO‐associated neurological disorders.  相似文献   

5.
West Nile virus (WNV), a member of the Flaviviridae family, is a mosquito‐borne pathogen that causes a large number of human infections each year. There are currently no vaccines or antiviral therapies available for human use against WNV. Therefore, efforts to develop new chemotherapeutics against this virus are highly desired. In this study, a WNV NS2B–NS3 protease inhibitor with a 1,3,4,5‐tetrasubstituted 1H‐pyrrol‐2(5H)‐one scaffold was identified by screening a small library of nonpeptidic compounds. Optimization of this initial hit by the synthesis and screening of a focused library of compounds with this scaffold led to the identification of a novel uncompetitive inhibitor ((?)‐ 1a16 , IC50=2.2±0.7 μM ) of the WNV NS2B–NS3 protease. Molecular docking of the chiral compound onto the WNV protease indicates that the R enantiomer of 1a16 interferes with the productive interactions between the NS2B cofactor and the NS3 protease domain and is thus the preferred isomer for inhibition of the WNV NS2B–NS3 protease.  相似文献   

6.
Monoamine oxidase (MAO) is a useful target in the treatment of neurodegenerative diseases and depressive disorders. Both isoforms, MAO‐A and MAO‐B, are known to play critical roles in disease progression, and as such, the identification of novel, potent and selective inhibitors is an important research goal. Here, two series of 3‐phenylcoumarin derivatives were synthesized and evaluated against MAO‐A and MAO‐B. Most of the compounds tested acted preferentially on MAO‐B, with IC50 values in the micromolar to nanomolar range. Only 6‐chloro‐4‐hydroxy‐3‐(2’‐hydroxyphenyl)coumarin exhibited activity against the MAO‐A isoform, while still retaining good selectivity for MAO‐B. 6‐Chloro‐3‐phenylcoumarins unsubstituted at the 4 position were found to be more active as MAO‐B inhibitors than the corresponding 4‐hydroxylated coumarins. For 4‐unsubstituted coumarins, meta and para positions on the 3‐phenyl ring seem to be the most favorable for substitution. Molecular docking simulations were used to explain the observed hMAO‐B structure–activity relationships for this type of compound. 6‐Chloro‐3‐(3’‐methoxyphenyl)coumarin was the most active compound identified (IC50=0.001 μM ) and is several times more potent and selective than the reference compound, R‐(?)‐deprenyl hydrochloride. This compound represents a novel tool for the further investigation of the therapeutic potential of MAO‐B inhibitors.  相似文献   

7.
Lectin‐like oxidized LDL receptor‐1 (LOX‐1), a newly identified scavenger receptor, has been increasingly linked to atherosclerosis. C‐reactive protein (CRP), a prototypic inflammatory marker, has been proven to promote atherogenesis. In this study, we evaluated the in vitro effects of CRP on LOX‐1 expression and the associated signal transduction pathway in THP‐1‐derived macrophages. Our study showed that incubation of macrophages with CRP significantly enhanced expression of LOX‐1 protein and mRNA levels in macrophages in a dose‐dependent manner; this expression could be suppressed by the nuclear factor kappa B (NF‐κB) pathway inhibitor BAY11‐7085. However, LOX‐1 was not inhibited by the inhibitor of mitogen‐activated protein kinase (MAPK) proteins (SP600125‐JNK/SAPK, SB203580‐p38, and U0126‐ERK1/2) in macrophages. In conclusion, human native CRP up‐regulated LOX‐1 expression in THP‐1‐derived macrophages primarily through the NF‐κB signaling pathway. Practical applications: Identification of LOX‐1 and definition of its biological role in pathophysiological states provided a new clue for understanding the nature of oxLDL uptake into macrophages. Internalization of modified lipoprotein by macrophages and foam cell formation are critical events in hypertension, diabetes mellitus, and dyslipidemia, which are the most important risk factors for atherosclerosis. As a characteristic inflammatory marker, CRP has been proven to play a pivotal role in promoting atherogenesis. However, crosstalk between CRP and LOX‐1 on macrophages has not been elucidated. Therefore, determining the regulatory process for LOX‐1 and the underlying signal transduction pathways may provide a new insight into the mechanism of atherosclerosis.  相似文献   

8.
A series of analogues of the adamantyl arotinoid (AdAr) chalcone MX781 with halogenated benzyloxy substituents at C2′ and heterocyclic derivatives replacing the chalcone group were found to inhibit IκBα kinase α (IKKα) and IκBα kinase β (IKKβ) activities. The growth inhibitory capacity of some analogues against Jurkat T cells as well as prostate carcinoma (PC‐3) and chronic myelogenous leukemia (K562) cells, which contain elevated basal IKK activity, correlates with the induction of apoptosis and increased inhibition of recombinant IKKα and IKKβ in vitro, pointing toward inhibition of IKK/NFκB signaling as the most likely target of the anticancer activities of these AdArs. While the chalcone functional group present in many dietary compounds has been shown to mediate interactions with IKKβ via Michael addition with cysteine residues, AdArs containing a five‐membered heterocyclic ring (isoxazoles and pyrazoles) in place of the chalcone of the parent system are potent inhibitors of IKKs as well, which suggests that other mechanisms for inhibition exist that do not depend on the presence of a reactive α,β‐unsaturated ketone.  相似文献   

9.
In recent years, clinical symptoms resulting from West Nile virus (WNV) infection have worsened in severity, with an increased frequency in neuroinvasive diseases among the elderly. As there are presently no successful therapies against WNV for use in humans, continual efforts to develop new chemotherapeutics against this virus are highly desired. The viral NS2B‐NS3 protease is a promising target for viral inhibition due to its importance in viral replication and its unique substrate preference. In this study, a WNV NS2B‐NS3 protease inhibitor with a 2‐{6‐[2‐(5‐phenyl‐4H‐[1,2,4]triazol‐3‐ylsulfanyl)acetylamino]benzothiazol‐2‐ylsulfanyl}acetamide scaffold was identified during screening. Optimization of this initial hit by synthesis and screening of a focused compound library with this scaffold led to the identification of a novel uncompetitive inhibitor ( 1 a24 , IC50=3.4±0.2 μM ) of the WNV NS2B‐NS3 protease. Molecular docking of 1 a24 into the WNV protease showed that the compound interferes with productive interactions of the NS2B cofactor with the NS3 protease and is an allosteric inhibitor of the WNV NS3 protease.  相似文献   

10.
Monoamine oxidase (MAO) is an important drug target for the treatment of neurological disorders. Several 3‐arylcoumarin derivatives were previously described as interesting selective MAO‐B inhibitors. Preserving the trans‐stilbene structure, a series of 2‐arylbenzofuran and corresponding 3‐arylcoumarin derivatives were synthesized and evaluated as inhibitors of both MAO isoforms, MAO‐A and MAO‐B. In general, both types of derivatives were found to be selective MAO‐B inhibitors, with IC50 values in the nano‐ to micromolar range. 5‐Nitro‐2‐(4‐methoxyphenyl)benzofuran ( 8 ) is the most active compound of the benzofuran series, presenting MAO‐B selectivity and reversible inhibition (IC50=140 nM ). 3‐(4′‐Methoxyphenyl)‐6‐nitrocoumarin ( 15 ), with the same substitution pattern as that of compound 8 , was found to be the most active MAO‐B inhibitor of the coumarin series (IC50=3 nM ). However, 3‐phenylcoumarin 14 showed activity in the same range (IC50=6 nM ), is reversible, and also severalfold more selective than compound 15 . Docking experiments for the most active compounds into the MAO‐B and MAO‐A binding pockets highlighted different interactions between the derivative classes (2‐arylbenzofurans and 3‐arylcoumarins), and provided new information about the enzyme–inhibitor interaction and the potential therapeutic application of these scaffolds.  相似文献   

11.
Antiapoptotic Bcl‐2 family proteins, such as Bcl‐xL, Bcl‐2, and Mcl‐1, are often overexpressed in tumor cells, which contributes to tumor cell resistance to chemotherapies and radiotherapies. Inhibitors of these proteins thus have potential applications in cancer treatment. We discovered, through structure‐based virtual screening, a lead compound with micromolar binding affinity to Mcl‐1 (inhibition constant (Ki)=3 μM ). It contains a phenyltetrazole and a hydrazinecarbothioamide moiety, and it represents a structural scaffold not observed among known Bcl‐2 inhibitors. This work presents the structural optimization of this lead compound. By following the scaffold‐hopping strategy, we have designed and synthesized a total of 82 compounds in three sets. All of the compounds were evaluated in a fluorescence‐polarization binding assay to measure their binding affinities to Bcl‐xL, Bcl‐2, and Mcl‐1. Some of the compounds with a 3‐phenylthiophene‐2‐sulfonamide core moiety showed sub‐micromolar binding affinities to Mcl‐1 (Ki=0.3–0.4 μM ) or Bcl‐2 (Ki≈1 μM ). They also showed obvious cytotoxicity on tumor cells (IC50<10 μM ). Two‐dimensional heteronuclear single quantum coherence NMR spectra of three selected compounds, that is, YCW‐E5, YCW‐E10, and YCW‐E11, indicated that they bind to the BH3‐binding groove on Bcl‐xL in a similar mode to ABT‐737. Several apoptotic assays conducted on HL‐60 cells demonstrated that these compounds are able to induce cell apoptosis through the mitochondrial pathway. We propose that the compounds with the 3‐phenylthiophene‐2‐sulfonamide core moiety are worth further optimization as effective apoptosis inducers with an interesting selectivity towards Mcl‐1 and Bcl‐2.  相似文献   

12.
11β‐Hydroxysteroid dehydrogenases (11β‐HSDs) are key enzymes regulating the pre‐receptor metabolism of glucocorticoid hormones. The modulation of 11β‐HSD type 1 activity with selective inhibitors has beneficial effects on various conditions including insulin resistance, dyslipidemia and obesity. Inhibition of tissue‐specific glucocorticoid action by regulating 11β‐HSD1 constitutes a promising treatment for metabolic and cardiovascular diseases. A series of novel adamantyl ethanone compounds was identified as potent inhibitors of human 11β‐HSD1. The most active compounds identified ( 52 , 62 , 72 , 92 , 103 and 104 ) display potent inhibition of 11β‐HSD1 with IC50 values in the 50–70 nM range. Compound 72 also proved to be metabolically stable when incubated with human liver microsomes. Furthermore, compound 72 showed very weak inhibitory activity for human cytochrome P450 enzymes and is therefore a candidate for in vivo studies. Comparison of the publicly available X‐ray crystal structures of human 11β‐HSD1 led to docking studies of the potent compounds, revealing how these molecules may interact with the enzyme and cofactor.  相似文献   

13.
A library of 3,4‐(methylenedioxy)aniline‐derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO‐B and AChE, with IC50 values in the micro‐ or nanomolar ranges. Compound 16 , 1‐(2,6‐dichlorobenzylidene)‐4‐(benzo[1,3]dioxol‐5‐yl)semicarbazide presented a balanced multifunctional profile of MAO‐A (IC50=4.52±0.032 μm ), MAO‐B (IC50=0.059±0.002 μm ), and AChE (IC50=0.0087±0.0002 μm ) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO‐A and MAO‐B, and mixed‐type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme–inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug‐like characteristics.  相似文献   

14.
An approach involving rational structural elaboration of the biologically active natural product diindolylmethane (DIM) with the incorporation of aminophosphonate and urea moieties toward the discovery of potent anticancer agents was considered. A four‐step approach for the synthesis of DIM aminophosphonate and urea derivatives was established. These novel compounds showed potent anticancer activities in two representative kidney and colon cancer cell lines, low toxicity to normal cells, higher potency than the parent natural product DIM and etoposide, and potent inhibition of cancer cell migration. Biophysical and immunological studies, including DAPI nuclear staining, western blot analysis with apoptotic protein markers, flow cytometry, immunocytochemistry, and comet assays of the two most potent compounds revealed good efficacies in apoptosis and DNA damage. It was found that down‐regulation of nuclear factor κB (NF‐κB p65) could be an important mode of action in apoptosis, and the two most potent derivatives were found to be more potent than parent compound DIM in the down‐regulation of NF‐κB. Our results show the importance of structural elaboration of DIM by rational incorporation of aminophosphonate and urea moieties to produce potent anticancer agents; they also suggest that this approach using other structurally simple bioactive natural products as scaffolds holds promise for future drug discovery and development.  相似文献   

15.
A series of 2‐amino‐6‐nitrobenzothiazole‐derived extended hydrazones were designed, synthesized, and investigated for their ability to inhibit monoamine oxidase A and B (MAO‐A/MAO‐B). The compounds were found to exhibit inhibitory activities in the nanomolar to micromolar range. Some of the compounds showed excellent potency and selectivity against the MAO‐B isoform. N′‐(5‐Chloro‐2‐oxoindolin‐3‐ylidene)‐2‐(6‐nitrobenzothiazol‐2‐ylamino)acetohydrazide (compound 31 ) showed the highest MAO‐B inhibitory activity (IC50=1.8±0.3 nm , selectivity index [SI]=766.67), whereas compound 6 [N′‐(1‐(4‐bromophenyl)ethylidene)‐2‐(6‐nitrobenzothiazol‐2‐ylamino)acetohydrazide] was found to be the most active MAO‐A inhibitor (IC50=0.42±0.003 μm ). Kinetic studies revealed that compounds 6 and 31 exhibit competitive‐type reversible inhibition against both MAO‐A and MAO‐B, respectively. Structure–activity relationship (SAR) studies disclosed several structural aspects significant for potency and the contribution of the methylene spacer toward MAO‐B inhibitory potency, with minimal or no neurotoxicity. Molecular modeling studies yielded a good correlation between experimental and theoretical inhibitory data. Binding pose analysis revealed the significance of cumulative effects of π–π stacking and hydrogen bond interactions for effective stabilization of virtual ligand–protein complexes. Further optimization studies of compound 31 , including co‐crystallization of inhibitor–MAO‐B complexes, are essential to develop these compounds as potential therapeutic agents for MAO‐B‐associated neurodegenerative diseases.  相似文献   

16.
A library of 4,5‐disubstituted 2‐aminoimidazole triazole amide (2‐AITA) conjugates has been successfully assembled. Upon biological screening, this class of small molecules was discovered as enhanced biofilm regulators through non‐microbicidal mechanisms against methicillin‐resistant Staphylococcus aureus (MRSA) and multidrug‐resistant Acinetobacter baumannii (MDRAB), with active concentrations in the low micromolar range. The library was also subjected to synergism and resensitization studies with β‐lactam antibiotics against MRSA. Lead compounds were identified that suppress the antibiotic resistance of MRSA by working synergistically with oxacillin, a β‐lactam antibiotic resistant to penicillinase. A further structure–activity relationship (SAR) study on the parent 2‐AITA compound delivered a 2‐aminoimidazole diamide (2‐AIDA) conjugate with significantly increased synergistic activity with oxacillin against MRSA, decreasing the MIC value of the β‐lactam antibiotic by 64‐fold. Increased anti‐biofilm activity did not necessarily lead to increased suppression of antibiotic resistance, which indicates that biofilm inhibition and resensitization are most likely occurring via distinct mechanisms.  相似文献   

17.
Samanta S  Cui T  Lam Y 《ChemMedChem》2012,7(7):1210-1216
West Nile virus (WNV), a member of the Flaviviridae family, is a mosquito‐borne pathogen that causes a great number of human infections each year. Neither vaccines nor antiviral therapies are currently available for human use. In this study, a WNV NS2B–NS3 protease inhibitor with a 9,10‐dihydro‐3H,4aH‐1,3,9,10a‐tetraazaphenanthren‐4‐one scaffold was identified by screening a small library of non‐peptidic compounds. This initial hit was optimized by solution‐phase synthesis and screening of a focused library of compounds bearing this scaffold. This led to the identification of a novel, uncompetitive inhibitor ( 1a40 , IC50=5.41±0.45 μM ) of WNV NS2B–NS3 protease. Molecular docking of this chiral compound onto the WNV protease indicates that the S enantiomer of 1a40 appears to interfere with the productive interactions between the NS2B cofactor and the NS3 protease domain; (S)‐ 1a40 is a preferred isomer for inhibition of WNV NS3 protease.  相似文献   

18.
Human DNA topoisomerase IIα (htIIα) is a validated target for the development of anticancer agents. Based on structural data regarding the binding mode of AMP‐PNP (5′‐adenylyl‐β,γ‐imidodiphosphate) to htIIα, we designed a two‐stage virtual screening campaign that combines structure‐based pharmacophores and molecular docking. In the first stage, we identified several monosubstituted 9H‐purine compounds and a novel class of 1H‐pyrazolo[3,4]pyrimidines as inhibitors of htIIα. In the second stage, disubstituted analogues with improved cellular activities were discovered. Compounds from both classes were shown to inhibit htIIα‐mediated DNA decatenation, and surface plasmon resonance (SPR) experiments confirmed binding of these two compounds on the htIIα ATPase domain. Proposed complexes and interaction patterns between both compounds and htIIα were further analyzed in molecular dynamics simulations. Two compounds identified in the second stage showed promising anticancer activities in hepatocellular carcinoma (HepG2) and breast cancer (MCF‐7) cell lines. The discovered compounds are suitable starting points for further hit‐to‐lead development in anticancer drug discovery.  相似文献   

19.
The phosphoinositide 3‐kinase (PI3K) pathway is aberrantly activated in many disease states, including tumor cells, either by growth factor receptor tyrosine kinases or by the genetic mutation and amplification of key pathway components. A variety of PI3K isoforms play differential roles in cancers. As such, the development of PI3K inhibitors from novel compound classes should lead to differential pharmacological and pharmacokinetic profiles and allow exploration in various indications, combinations, and dosing regimens. A screening effort aimed at the identification of PI3Kγ inhibitors for the treatment of inflammatory diseases led to the discovery of the novel 2,3‐dihydroimidazo[1,2‐c]quinazoline class of PI3K inhibitors. A subsequent lead optimization program targeting cancer therapy focused on inhibition of PI3Kα and PI3Kβ. Herein, initial structure–activity relationship findings for this class and the optimization that led to the identification of copanlisib (BAY 80‐6946) as a clinical candidate for the treatment of solid and hematological tumors are described.  相似文献   

20.
The major challenge for proteasome inhibitor design lies in achieving high selectivity for, and activity against, the target, which requires specific interactions with the active site. Novel ligands aim to overcome off‐target‐related side effects such as peripheral neuropathy, which is frequently observed in cancer patients treated with the FDA‐approved proteasome inhibitors bortezomib ( 1 ) or carfilzomib ( 2 ). A systematic comparison of electrophilic headgroups recently identified the class of α‐keto amides as promising for next generation drug development. On the basis of crystallographic knowledge, we were able to develop a structure–activity relationship (SAR)‐based approach for rational ligand design using an electronic parameter (Hammett’s σ) and in silico molecular modeling. This resulted in the tripeptidic α‐keto phenylamide BSc4999 [(S)‐3‐(benzyloxycarbonyl‐(S)‐leucyl‐(S)‐leucylamino)‐5‐methyl‐2‐oxo‐N‐(2,4‐dimethylphenyl)hexanamide, 6 a ], a highly potent (IC50=38 nM ), cell‐permeable, and slowly reversible covalent inhibitor which targets both the primed and non‐primed sites of the proteasome’s substrate binding channel as a special criterion for selectivity. The improved inhibition potency and selectivity of this new α‐keto phenylamide makes it a promising candidate for targeting a wider range of tumor subtypes than commercially available proteasome inhibitors and presents a new candidate for future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号