首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel Selected-mapping (SLM) Peak-to-average power ratio (PAPR) reduction scheme requires no Side information (SI) in Underwater acoustic (UWA) OFDM system is proposed. In the proposed scheme, every distinct phase sequence is represented by a unique Orthogonal comb pilot sequence (OPS), and the orthogonal properties of the OPSs are used to distinguish the index of phase sequences at the receiver. Therefore, the proposed scheme does not need to reserve bits for transmitting SI, so that the data rate can be raised. Simulation results show that the PAPR reduction performance has almost 0.5dB gains comparing to the Conventional SLM (C-SLM) scheme and the Bit error ratio (BER) performance is approximately the same as the SLM scheme with perfect SI. Field experimental results also demonstrate that the proposed scheme can differentiate phase sequences, therefore significantly enhance the quality of the UWA OFDM communication system.  相似文献   

2.
The high peak‐to‐average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems not only increases the complexity of the analog‐to‐digital (A/D) and digital‐to‐analog (D/A) converters but also reduces the efficiency of the radio frequency (RF) power amplifier. In this paper, we present a data position permutation (DPP) method, which is based on a selected mapping (SLM) scheme, for reducing the PAPR in OFDM systems. The candidate signal on each branch of the SLM scheme is generated by permuting the position and rotating the phase of the original data. In addition, a modified DPP method with lower bit error rate (BER) is proposed. The simulation results show that the proposed method provides better performance with regard to complexity, spectrum efficiency, and BER as compared to that of the SLM‐based dummy sequence insertion (SLM‐DSI) method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
One of the effective methods used for reducing peak‐to‐average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems is selected mapping (SLM). In this paper, a new SLM scheme called DSI‐SLM, which is a combination of dummy sequence insertion (DSI) and conventional selected mapping (C‐SLM) is proposed. Previous techniques have had some drawbacks. In DSI, increasing the number of dummy sequences to have better PAPR degrades transmission efficiency, and in C‐SLM, the complexity rises dramatically when the number of sub‐blocks increases. The proposed DSI‐SLM scheme significantly reduces the complexity because of the reduction in the number of sub‐blocks compared with the C‐SLM technique while its PAPR performance is even better. To enhance the efficiency of the OFDM system and suppress the out‐of‐band distortion from the power amplifier nonlinearity, a digital predistortion technique is applied to the DSI‐SLM scheme. Simulations are carried out with the actual power amplifier model and the OFDM signal based on the worldwide interoperability for microwave access standard and quadrature phase‐shift keying modulation. The simulation results show improvement in PAPR reduction and complexity, whereas the BER performance is slightly worse. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
高的峰值平均功率比(Peak-to-Average Power Ratio,PAPR)是光正交频分复用(Optical Orthogonal Frequency Division Multiplexing,O-OFDM)系统的一个主要缺点,选择性映射(Selective Mapping,SLM)法能有效降低高PAPR出现的概率,但它的计算复杂度较高.一些低复杂度的SLM方案能够有效地降低复杂度,但同时也降低了PAPR的抑制性能.为了平衡这两个因素,将低复杂度SLM方案与次优选择的思想相结合,文章提出了一种联合改进的PAPR抑制方案.在低复杂度方案中,通过将一个复频域信号分为两个实信号,再利用快速傅里叶变换(Fast Fourier Transform,FFT)的平移和反折性质将其重建成新的信号,以得到更多的备选信号,如此便能降低计算复杂度.然后,再结合次优选择的思想,选择PAPR最小的一路以得到最优的PAPR抑制性能.仿真结果验证了该方案的有效性.  相似文献   

5.
Orthogonal frequency division multiplexing (OFDM) signals have a problem with a high peak‐to‐average power ratio (PAPR). A distortionless selected mapping (SLM) has been proposed to reduce the PAPR, but a high computational complexity prohibits its application to an OFDM system with a large number of subcarriers. Recently, we proposed OFDM combined with time division multiplexing (OFDM/TDM) using minimum mean square error frequency‐domain equalization (MMSE‐FDE) to improve the bit error rate (BER) performance of conventional OFDM with a lower PAPR. The PAPR problem, however, cannot be completely eliminated. In this paper, we present an SLM combined with symbol re‐mapping for OFDM/TDM using MMSE‐FDE. Unlike the conventional OFDM, where SLM is applied over subcarriers in the frequency domain, we exploit both time and frequency dimensions of OFDM/TDM signal to improve the performance with respect to PAPR and BER. A mathematical model for PAPR distribution of OFDM/TDM with SLM is presented to complement the computer simulation results. It is shown that proposed SLM can further reduce the PAPR without sacrificing the BER performance with the same or reduced computational complexity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Weighted overlap and add‐orthogonal frequency division multiplexing (WOLA‐OFDM) is a new waveform proposed recently for meeting the requirements of fifth generation (5G) telecommunication standards. In spite of being a serious 5G waveform candidate, WOLA‐OFDM is exposed to the problem of high peak to average power ratio (PAPR) similar to the other waveforms in which multicarrier transmission strategy is employed. Due to the overlapping nature of WOLA‐OFDM waveform, where the extension of the current symbol is overlapped with the extension of the previous symbol, it will not be efficient to apply conventional PTS (C‐PTS) directly to the WOLA‐OFDM waveform. Therefore, in this paper, we propose dual symbol optimization‐based partial transmit sequence (DSO‐PTS) technique for PAPR reduction in WOLA‐OFDM waveform. In our proposed technique, two adjacent symbols are jointly considered when searching for the optimal data block with minimum PAPR unlike the C‐PTS where the adjacent symbols are optimized individually. In the simulations, our proposed DSO‐PTS technique, C‐PTS, and GreenOFDM that is developed recently by modifying the conventional selective mapping (SLM) method are compared with each other with regard to PAPR reduction performance for different search numbers (SNs). In addition, the effects of DSO‐PTS, C‐PTS, and GreenOFDM on the amount of out of band (OOB) radiation in the power spectral density (PSD) graph of WOLA‐OFDM employing solid state power amplifier (SSPA) is measured for different SNs and input back off (IBO) values. According to the simulation results, our proposed DSO‐PTS technique clearly demonstrates a superior PAPR reduction and PSD performance.  相似文献   

7.
In this paper, we propose a new peak-to-average power ratio (PAPR) reduction scheme of orthogonal frequency division multiplexing (OFDM) system, called a modified selected mapping (SLM) scheme, which considerably reduces the computational complexity with keeping the similar PAPR reduction performance compared with the conventional SLM scheme. The proposed scheme is analytically and numerically evaluated for the OFDM system specified in the IEEE 802.16 standard. For the OFDM system with 2048 subcarriers, the proposed scheme with 4 binary phase sequences can reduce the complex multiplications by 63.5% with the similar PAPR reduction compared with the SLM scheme with 16 binary phase sequences.  相似文献   

8.
徐林搏 《电子科技》2014,27(4):27-29
选择映射(SLM)是一种无失真降低OFDM信号峰平比(PAPR)的有效方法,但该方法通过串并转换将一路信号变为U路信号,再对U路信号进行IFFT处理,计算量大,同时也降低了信号传输速率。文中提出了一种改进的随机筛选法方案,该方法在IFFT模块之前就对序列进行选择,根据判决门限选择其中随机性最好的一路信号进行传输。其与SLM法相比,只进行一路信号的IFFT计算,复杂度大幅降低,且提高了信号传输效率,并在较大程度上降低了OFDM信号的峰平比。  相似文献   

9.
高天  李国民 《电子科技》2011,24(9):24-27
选择映射(SLM)技术是一种无失真降低正交频分复用(OFDM)系统信号峰均比的方法,为更好地降低正交频分复用系统的峰均比,文中提出了一种基于SLM级联抵消技术降低PAPR的优化算法。该算法首先利用改进的SLM算法,对系统PAPR特性进行优化,然后利用抽样信号作为参考函数,实现对系统峰均比的有效降低。通过分析SLM级联峰...  相似文献   

10.
Bit-Based SLM Schemes for PAPR Reduction in QAM Modulated OFDM Signals   总被引:1,自引:0,他引:1  
In this paper, we propose two bit-based selected mapping (SLM) schemes for reducing peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals with quadrature amplitude modulation (QAM), called bitwise SLM (BSLM) and partial bit inverted SLM (PBISLM). Contrary to the conventional SLM which rotates the phases of QAM symbols in the frequency domain, the proposed schemes change the magnitudes as well as the phases of QAM symbols by applying binary phase sequences to the binary data sequence before mapped to QAM symbols. Simulation results show that the proposed schemes have better PAPR reduction performance with shaping gain than the conventional SLM scheme for the QAM modulated OFDM signals, especially for the small number of subcarriers.   相似文献   

11.
By using the time domain sequence superposition (TDSS) technique, in this paper, we propose a low complexity selected mapping (LC-SLM) scheme for the peak-to-average power ratio (PAPR) reduction of the orthogonal frequency division multiplexing (OFDM) system. Unlike the conventional selected mapping (SLM) scheme which needs several inverse fast Fourier transform (IFFT) operations for an OFDM signal, the proposed scheme requires to implement two IFFT operations only. Thus, it can remarkably reduce the computational complexity. Simulation results show that the proposed scheme can achieve similar PAPR performance as the conventional SLM scheme.   相似文献   

12.
胡武君  杨霖 《通信学报》2015,36(4):171-177
为降低多输入多输出正交频分复用(MIMO-OFDM, multiple input multiple output orthogonal frequency division multiplexing)系统中传统选择性映射(SLM, selected mapping)算法的计算复杂度,提出了通过信号时域循环移位和天线间信号联合产生更多具有不同峰均功率比(PAPR, peak to average power ratio)的备选序列集合的方法。接收端先根据发射端序列选取情况恢复出频域旋转信号,再比较反向旋转序列与最近星座点的距离来恢复原始序列。仿真结果表明,所提出的方法能有效地抑制MIMO-OFDM信号的PAPR。另外,与传统SLM算法相比,提出方法明显降低了计算复杂度,而且可以获得传统SLM方法在已知边带副信息情况下近似的比特误码率性能。  相似文献   

13.
In wireless telecommunication, one of the modulation approaches used is the orthogonal frequency division multiplexing (OFDM). Moreover, the high peak‐to‐average power ratio (PAPR) is the one notorious demerit in OFDM systems. Hence, the high power amplifier (HPA) is used in its linear region. Otherwise, the bit error rate (BER) will be increased. Several approaches are proposed in the wireless communications for reducing the PAPR issue. In this paper, we propose a hybrid Discrete Hartley Matrix Transform (DHMT) precoding using both selected mapping (SLM) and partial transmit sequence (PTS) PAPR reduction strategies. For the multicarrier modulation process, instead of Inverse Fast Fourier transform (IFFT) operation, the DHMT operation is used because of its low computational complexity. Based on multi‐chaotic, the time‐frequency domain encryption (TFDE) approach is adopted for physical layer security to confirm the security in data transmission. For enhancing the physical layer security, the proposed encryption system generates chaotic sequences based on Logistic maps and Lozi in the frequency and time domains together. In this study, the implementation of the DHMT‐based OFDM system is processed to reduce the maximum PAPR. Implementation is performed on the MATLAB platform, and the performances are calculated using complementary cumulative distribution function (CCDF), BER regards to signal‐to‐noise ratio (SNR), and the outputs are compared based on the computation time. However, compared with the existing models, the proposed model produced better PAPR minimization regarding SNR.  相似文献   

14.
罗靖宇  沈晓波 《通信技术》2010,43(8):222-224
正交频分复用(OFDM)和多载波码分多址(MC-CDMA)被广泛认为是未来4G通信的核心技术。但是,OFDM和MC-CDMA信号的高峰均功率比(PAPR)会引起非线性失真并导致误码率性能恶化,这已成为它们实用化的最大障碍。选择性映射(SLM)是一种能有效地降低系统PAPR方法,其中相位序列的选择直接影响降低PAPR的效果。提出将一种新的伪随机扰码作为选择性映射中的相位序列来降低OFDM和MC-CDMA系统的PAPR,仿真得出这种伪随机扰码序列能有效地降低系统的PAPR,且优于传统Walsh-Hadamard、Golay序列。  相似文献   

15.
Orthogonal frequency-division multiplexing (OFDM) is an attractive transmission technique for high-bit-rate communication systems. One major drawback of OFDM is the high peak-to-average power ratio (PAPR) of the transmitter's output signal. The selected mapping (SLM) approach provides good performance for PAPR reduction, but it requires a bank of inverse fast Fourier transforms (IFFTs) to generate a set of candidate transmission signals, and this requirement usually results in high computational complexity. In this paper, we propose a kind of low-complexity conversions to replace the IFFT blocks in the conventional SLM method. Based on the proposed conversions, we develop two novel SLM schemes with much lower complexity than the conventional one; the first method uses only one IFFT block to generate the set of candidate signals, while the second one uses two IFFT blocks. Computer simulation results show that, as compared to the conventional SLM scheme, the first proposed approach has slightly worse PAPR reduction performance and the second proposed one reaches almost the same PAPR reduction performance.  相似文献   

16.
Orthogonal frequency division multiplexing (OFDM) is a popular transmission technique in wireless communication. Although already widely addressed in many studies, OFDM still has flaws, one of which is the occurrence of high peak‐to‐average power ratio (PAPR) in the transmission signal. The partial transmit sequence (PTS) technique is one method adopted to reduce high PAPR in OFDM systems. However, as PTS utilizes phase factors to generate multiple candidate signals, large amounts of calculation and time are required to search the candidate signal with the minimal PAPR, which will then be adopted as the final transmission signal. This paper proposes a novel PAPR reduction method, which can be applied in OFDM systems with M‐ary phase‐shift keying modulation. It not only requires less computation but also possesses error correction capabilities. More precisely, the proposed method is to divide a block‐coded modulation code into the direct sum of a correcting subcode for encoding information bits and a scrambling subcode for generating phase factors. Our proposed method is a suboptimal technique with low computation, because it uses a genetic algorithm with a partheno‐crossover operator as the transmitted signal selection mechanism. Simulation results show our proposed method has better PAPR performance than the GA‐PTS scheme. Based on the simulation results in Figures 5 and 6, it is evident that our proposed method can be employed in any OFDM system by using M‐PSK modulation.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Orthogonal frequency division multiplexing (OFDM) is perhaps the most spectrally efficient, robust transmission technique discovered so far for communication systems, and it also mitigates the problem of multipath environment. High peak-to-average power ratio (PAPR) has always been a major drawback of the OFDM systems. In this article, a new precoding technique has been proposed based on Vandermonde-like matrix (VLM) and selective mapping (SLM) to reduce PAPR in OFDM systems. VLM precoding reduces the autocorrelation of the input sequences while SLM takes an advantage of the fact that the PAPR is very sensitive to phase shifts of the signal. The main advantage of this proposed scheme is to achieve a significant reduction in PAPR without increasing the system complexity. Computer simulations show that, the proposed method outperforms the existing precoding techniques without degrading the error performance of the system.  相似文献   

18.
针对光正交频分复用(O-OFDM)系统中峰值平均功 率比(PAPR)较高的缺点,对PAPR抑制技术的选择性 映射法(SLM) 进行了深入研究。基于低复杂度SLM方案的深入研究,提出了一种改进的次PAP R选择的思 想与低复杂度SLM相结合的PAPR抑制方案。改 进的SLM方案能够成倍降低传统SLM方案的计算复杂 度。仿真分析表明,改进的SLM方案在载波数为256的O-OFDM系统中,计算复杂度能降低50%以上,并 且随着子载波数的增加,其复杂度降低程度更为高效;同时,该改进的SLM方案又能使其PAPR抑制性能优于传统的SLM方案,从而进一步提升了低复杂度SLM 方案的实用价值。  相似文献   

19.

Selected mapping (SLM) is one of the promising techniques used for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) system. One of the major drawbacks in this technique is that, the transmitter is forced to transmit more amount of side information (SI) bits in order to recover the original data at the receiver, which leads to data rate loss and inefficient transmission. In this paper, a new phase sequence generation method using Lehmer Random Number Generator (LRNG) called Lehmer sequence is proposed for SLM technique. Using the periodicity property of this sequence, the SI bits are embedded within the transmitted data block for 16-PSK modulation, which ensures that SI bits are not explicitly sent. The simulation results show that the proposed SLM (PSLM) provides a slight improvement in PAPR reduction without compromising the bit error rate (BER) for higher values of an expansion factor when compared to conventional SLM (CSLM).

  相似文献   

20.
Intercarrier interference (ICI) self-cancellation, new ICI self-cancellation and conjugate cancellation schemes have been proposed in the literature to mitigate the effect of ICI. In this paper we have performed the mathematical analysis of PAPR performances for ICI self-cancellation, new ICI self-cancellation and ICI conjugate cancellation schemes and it is found that PAPR performance of these schemes are either very close to or poorer than the standard OFDM signal, which necessitates the requirement of PAPR reduction. After realizing the need of PAPR reduction in ICI cancellation schemes, we have proposed a joint scheme to reduce ICI and PAPR simultaneously. In this paper, we have proposed a multipoint partial transmit sequence (PTS) scheme, to improve the PAPR performance of ICI cancellation schemes. The proposed multipoint PTS based PAPR reduction scheme is coupled with ICI cancellation schemes in such a way that CIR performance of these schemes after coupling remains unchanged and no SI is required at the receiver to recover the original data signal. A comparison of CIR and PAPR performances for ICI cancellation schemes with and without PAPR reduction is also presented in this paper. The analytical results of CIR and PAPR performances for conventional ICI cancellation and joint ICI cancellation and PAPR reduction confirm the outperformance of the proposed scheme. We have also evaluated the SER performance of the joint schemes over additive white Gaussian noise and fading channels and presented a comparison with other existing schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号