首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article explored the possibility of using silica from fly‐ash particles as reinforcement in natural rubber/styrene–butadiene rubber (NR/SBR) vulcanizates. For a given silica content, the NR : SBR blend ratio of 1 : 1 (or 50 : 50 phr) exhibited the optimum mechanical properties for fly‐ash filled NR/SBR blend system. When using untreated silica from fly‐ash, the cure time and mechanical properties of the NR/SBR vulcanizates decreased with increasing silica content. The improvement of the mechanical properties was achieved by addition of Si69, the recommended dosage being 2.0 wt % of silica content. The optimum tensile strength of the silica filled NR/SBR vulcanizates was peaked at 10–20 phr silica contents. Most mechanical properties increased with thermal ageing. The addition of silica from fly‐ash in the NR/SBR vulcanizates was found to improve the elastic behavior, including compression set and resilience, as compared with that of commercial precipitated silica. Taking mechanical properties into account, the recommended dosage for the silica (FASi) content was 20 phr. For more effective reinforcement, the silica from fly‐ash particles had to be chemically treated with 2.0 wt % Si69. It was convincing that silica from fly‐ash particles could be used to replace commercial silica as reinforcement in NR/SBR vulcanizates for cost‐saving and environment benefits. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

2.
In this study, we investigated the effects of untreated precipitated silica (PSi) and fly ash silica (FASi) as fillers on the properties of natural rubber (NR) and styrene–butadiene rubber (SBR) compounds. The cure characteristics and the final properties of the NR and SBR compounds were considered separately and comparatively with regard to the effect of the loading of the fillers, which ranged from 0 to 80 phr. In the NR system, the cure time and minimum and maximum torques of the NR compounds progressively increased at PSi loadings of 30–75 phr. A relatively low cure time and low viscosity of the NR compounds were achieved throughout the FASi loadings used. The vulcanizate properties of the FASi‐filled vulcanizates appeared to be very similar to those of the PSi‐filled vulcanizates at silica contents of 0–30 phr. Above these concentrations, the properties of the PSi‐filled vulcanizates improved, whereas those of the FASi‐filled compounds remained the same. In the SBR system, the changing trends of all of the properties of the filled SBR vulcanizates were very similar to those of the filled NR vulcanizates, except for the tensile and tear strengths. For a given rubber matrix and silica content, the discrepancies in the results between PSi and FASi were associated with filler–filler interactions, filler particle size, and the amount of nonrubber in the vulcanizates. With the effect of the FASi particles on the mechanical properties of the NR and SBR vulcanizates considered, we recommend fly ash particles as a filler in NR at silica concentrations of 0–30 phr but not in SBR systems, except when improvement in the tensile and tear properties is required. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2119–2130, 2004  相似文献   

3.
王旭  常素芹  冯钠  戚晓霞 《弹性体》2013,23(1):58-64
分别采用一段和两段模压法制备了以顺丁橡胶(BR)/丁苯橡胶(SBR)/天然橡胶(NR)为基体的橡胶发泡材料,研究了三种化学发泡剂N,N'-二甲基戊次甲基四胺(H)、4,4'-氧代双(苯磺酰肼)(OBSH)以及H/OBSH(质量比1:1)复配对发泡及硫化特性的影-向,以及3种发泡剂和2种成型工艺对收缩率及相结构的影响。结果表明,发泡剂H对硫化性能影响最大,含发泡剂H的混炼胶在分解过程中释放的热量最多;加入3种发泡剂都具有一种较大的泡孔镶嵌在较小的泡孔丛中的泡孔形态;密度和线收缩率均随着时间的增加而增加,经H/OBSH复配的发泡剂更适合该体系成型,材料线收缩率均比单独使用H和OBSH小,两段模压法可以有效地提高发泡材料的尺寸稳定性,收缩率降低至3.88%,同时发泡剂使用率最多可提高31.67%。  相似文献   

4.
The purpose of this article is that the silica‐modified SBR/BR blend replaces natural rubber (NR) in some application fields. The styrene‐butadiene rubber (SBR) and cis‐butadiene rubber (BR) blend was modified, in which silica filler was treated with the r‐Aminopropyltriethoxysilane (KH‐550) as a coupling agent, to improve mechanical and thermal properties, and compatibilities. The optimum formula and cure condition were determined by testing the properties of SBR/BR blend. The properties of NR and the silica‐modified SBR/BR blend were compared. The results show that the optimum formulawas 80/20 SBR/BR, 2.5 phr dicumyl peroxide (DCP), 45 phr silica and 2.5 mL KH‐550. The best cure condition was at 150°C for 25 min under 10 MPa. The mechanical and thermal properties of SBR/BR blend were obviously modified, in which the silica filler treated with KH‐550. The compatibility of SBR/BR blend with DCP was better than those with benzoyl peroxide (BPO) and DCP/BPO. The crosslinking bonds between modified silica and rubbers were proved by Fourier transform infrared analysis, and the compatibility of SBR and BR was proved by polarized light microscopy (PLM) analysis. The silica‐modified SBR/BR blend can substitute for NR in the specific application fields. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

5.
BACKGROUND: Tack and green strength of filled and gum (unfilled) natural rubber (NR), poly(styrene‐co‐butadiene) rubber (SBR), polybutadiene rubber (BR) and (SBR‐BR) blend with different loadings of reinforcement agent, silanized silica nanofiller (Coupsil 8113), were studied and the results compared and discussed. RESULTS: It was found that silica was fully dispersed in rubber matrix after 13 min of mixing. In addition, with some exceptions for NR and (SBR‐BR) blend, filler loading decreased the tack strength of the studied filled rubbers. Green strength and Mooney viscosity increased with filler loading for all studied filled rubbers but with different rates and amounts. The optimum filler loadings for NR and (SBR‐BR) filled blend were 30 and 10 phr, respectively. Tacks of NR filled rubbers were much higher than those of synthetic filled rubbers. CONCLUSION: It was concluded that filler loading alters substantially the tack and green strength of the rubbers under investigation. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
The fatigue resistance of silica‐filled natural rubber (NR) mixes modified with phosphorylated cardanol prepolymer (PCP) was studied in comparison with similar compositions without PCP and with those containing the same dosage of a silane coupling agent (Si‐69). Considerable improvement in the fatigue resistance was observed for the PCP‐modified NR vulcanizate containing 20 phr of silica compared with the unmodified and Si‐69 modified vulcanizates. In addition, the tear strength of the PCP‐modified NR vulcanizate was higher than that of the others. Atomic force microscopy and the scanning electron microscopy of the vulcanizates showed better dispersion of silica particles in the NR matrix in the presence of PCP than in the unmodified and Si‐69‐modified NR vulcanizates. It is assumed that, at a dosage of 5 phr, PCP functions as a coupling agent between NR and the silica particles thereby improving the filler dispersion and consequently the mechanical properties of the vulcanizate. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
In this study we reported synergic activity of a novel secondary accelerator N‐Benzylimine aminothioformamide (BIAT) along with tetramethylthiuram disulfide (TMTD) in improving cure and mechanical properties of gum and filled mixes of Styrene‐Butadiene Rubber (SBR). The feasibility of application of BIAT in sulfur vulcanization of an ideal blend of SBR and natural rubber (NR) has also been investigated. The mechanical properties like t ensile strength, tear resistance, hardness, compression set, and abrasion loss were measured. Swelling values were also determined as a measure of crosslink densities of the vulcanizates. The binary accelerator system BIAT‐TMTD was found very effective in improving cure properties of the mixes of pure SBR and a 50/50 blend of SBR and NR.There was also found simultaneous improvement in mechanical properties of vulcanizates of both pure and blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Natural rubber (NR) usage is wide‐spread from pencil erasers to aero tyres. Carbon black and silica are the most common reinforcing fillers in the rubber industries. Carbon black enhances the mechanical properties, while silica reduces the rolling resistance and enhances the wet grip characteristics. However, the dispersion of polar silica fillers in the nonpolar hydrocarbon rubbers like natural rubber is a serious issue to be resolved. In recent years, cardanol, an agricultural by‐product of the cashew industry is already established as a multifunctional additive in the rubber. The present study focuses on dispersion of silica filler in natural rubber grafted with cardanol (CGNR) and determination of its technical properties. The optimum cure time reduces and the cure rate increases for the CGNR vulcanizates as compared to that of the NR vulcanizates at all loadings of silica varying from 30 to 60 phr. The interaction between the phenolic moiety of cardanol and the siloxane as well as silanol functional groups present on the silica surface enhances the rubber–filler interaction which leads to better reinforcement. The crosslink density and bound rubber content are found to be higher for the silica reinforced CGNR vulcanizates. The physico‐mechanical properties of the silica reinforced CGNR vulcanizates are superior to those of the NR vulcanizates. The CGNR vulcanizates show lower compression set and lower abrasion loss. The dynamic‐mechanical properties exhibit less Payne effect for silica reinforced CGNR vulcanizates as compared to the NR vulcanizates. The transmission electron photomicrographs show uniform dispersion of silica filler in the CGNR matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43057.  相似文献   

9.
Onium modified montmorillonite (organoclay) was compounded with natural rubber (NR) in an internal mixer and cured by using a conventional sulfuric system. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) in 10 parts per hundred rubber (phr) was used as a compatibilizer in this study. For comparison purposes, two commercial fillers: carbon black (grade N330) and silica (grade vulcasil‐S) were used. Cure characteristics were carried out on a Monsanto MDR2000 Rheometer. Organoclay filled vulcanizate showed the lowest values of torque maximum, torque minimum, scorch, and cure times. The kinetics of cure reaction showed organoclay could behave as a cocuring agent. The mechanical testing of the vulcanizates involved the determination of tensile and tear properties. The improvement of tensile strength, elongation at break, and tear properties in organoclay filled vulcanizate were significantly higher compared to silica and carbon black filled vulcanizates. In terms of reinforcing efficiency (RE), organoclay exhibited the highest stiffness followed by silica and carbon black filled vulcanizates. Scanning electron microscopy revealed that incorporation of various types of fillers has transformed the failure mechanism of the resulting NR vulcanizates compared to the gum vulcanizates. Dynamic mechanical thermal analysis (DMTA) revealed that the stiffness and molecular relaxation of NR vulcanizates are strongly affected by the filler–rubber interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2438–2445, 2004  相似文献   

10.
Variation of the crosslink density of a rubber vulcanizate depending on the rubber composition after the thermal aging was studied with single rubber, biblend, and triblend vulcanizates of natural rubber (NR), butadiene rubber (BR), and styrene‐butadiene rubber (SBR). The efficient vulcanization (EV) system was employed to minimize the influence of free sulfur in the vulcanizate on the change of the crosslink density. Thermal aging was performed at 40, 60, and 80°C for 20 days with 5‐day intervals. The crosslink densities of the vulcanizates after the thermal aging increase. For the single rubber vulcanizates, variation of the crosslink density by the thermal aging has the order: SBR > BR > NR. For the biblend vulcanizates, variations of the crosslink densities of the NR/SBR and SBR/BR blends are larger than that of NR/BR blend. Variation of the crosslink density of the vulcanizate increases by increasing the SBR content in the vulcanizate. Variation of the crosslink density of the rubber vulcanizate depending on the rubber composition was explained by miscibility of the blends, combination reaction of the pendent groups, and mobility of the pendent group. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1378–1384, 2000  相似文献   

11.
The ternary composites of 1,4‐cis polybutadiene rubbers (BR), styrene–butadiene rubber (SBR), and natural rubber (NR) foams containing chemical blowing agents Oxybis (benzene sulfonyl) hydrazide (OBSH) were prepared by two‐stage compression molding technique with various precured degrees. Foam force rheometer indicated that the cure rate was match with foaming rate at precured degree of 30%, which the time of the maximum foaming rate was earlier only 14 s than that of the maximum cure rate. SEM presented that the number of cell was denser at precured degree of 30% than those with other precured degrees. The average cell size declined, cell wall thickness became thicker, and cell distribution became narrower just as precured degree was increasing. The results of crosslinking density was measured by equilibrium swelling technique in good agreement with that of magnetism resonance crosslinking density spectrometer measurement, which crosslinking density was increased as precured degrees increased. Differential scanning calorimeter showed that each curve exhibits two steps in heat capacity for BR/SBR/NR foams. With further increase of precured degrees, the two groups of Tgs were all shift to the higher temperature, and the area of the melting peak decreased gradually between −20°C and −40°C. TGA results demonstrated that BR/SBR/NR foams with various precured degrees obtained better thermal stability than those of non‐precured foams. The high density of polymeric foams exhibits the high mechanical properties such as tensile strength, tear strength, and elongation at break. The inflection points of density, cell density, and hardness were all appeared at precured degree of 30%. POLYM. COMPOS., 34:849–859, 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Carbon black (CB) and precipitated silica are two major reinforcing fillers in rubbers. CB/silica hybrid filler is also widely used in rubbers to provide balanced properties. CB/silica‐hybrid‐filler‐filled styrene‐butadiene rubber (SBR) containing naphthenic oil (NO), soybean oil (SO) and norbornylized SO (NSO) was investigated. The swelling and curing behavior and rheological, mechanical, thermal, aging and dynamic properties were studied and compared with earlier reported data on CB‐ or silica‐filled SBR. NSO provides better scorch safety and faster cure than SO. Compared with NO, the addition of SO and NSO enhances the thermal stability and aging resistance of SBR vulcanizates. SBR/NSO vulcanizates with hybrid filler exhibit a higher tensile and tear strength than SBR/NO and SBR/SO vulcanizates. A synergistic effect in the abrasion resistance of vulcanizates containing the hybrid filler is observed. An increase of sulfur content in the hybrid‐filler‐filled SBR/NSO vulcanizates provides further improvement in abrasion resistance, wet traction and rolling resistance. © 2017 Society of Chemical Industry  相似文献   

13.
Polyglycidylmethacrylate grafted butadiene rubber (PGMA‐g‐BR) was synthesized by a graft solution copolymerization technique. The PGMA content was determined through titration against HBr. The PGMA‐g‐BR was blended with styrene butadiene rubber/butadiene acrylonitrile rubber (SBR/NBR) blends with different blend ratios. The SBR/NBR (50/50) blend was selected to examine the compatibility of such blends. Compatibility was examined using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and viscosity measurements. The scanning electron micrographs illustrate the change of morphology of the SBR/NBR rubber blend as a result of the incorporation of PGMA‐g‐BR onto that blend. The Tgs of SBR and NBR in the blend get closer upon incorporation of PGMA‐g‐BR 10 phr, which indicates improvement in blend homogeneity. The intrinsic viscosity (η) versus blend ratio graph shows a straight‐line relationship, indicating some degree of compatibility. Thermal stability of the compatibilized and uncompatibilized rubber blend vulcanizates was investigated by determination of the physicomechanical properties before and after accelerated thermal aging. Of all the vulcanizates with different blend ratios under investigation, the SBR/NBR (25/75) compatibilized blend possessed the best thermal stability. However, the SBR/NBR (75/25) compatibilized blend possessed the best swelling performance in brake fluid. The effect of various combinations of inorganic fillers on the physicomechanical properties of that blend, before and after accelerated thermal aging, was studied in the presence and absence of PGMA‐g‐BR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1559–1567, 2006  相似文献   

14.
The use of recycled rubber including ground scrap vulcanizates in rubber compounds was studied. When ground rubber was incorporated into rubber compounds, the physical properties, especially the tensile strength, were deteriorated compared to the virgin rubber compound. Also, incorporating ground rubber caused a change of the cure behavior via migration of sulfur or an accelerator between the virgin rubber matrix and the ground rubber vulcanizate. In this study, the fracture behavior and abrasion property of carbon black‐filled SBR and NR compounds containing ground rubber vulcanizate were investigated. Also, the effect of the particle size or loading volume of ground rubber powder on those properties was studied. Four different sizes, 420–600, 177–250, 125–150, and 75–88 μm, of ambient ground rubber powder recycled from waste tire were selected and used in the compounding. The loading amounts of ground rubber powder were 10, 30, and 50 phr. The flex crack growth of SBR‐ and NR‐based compounds was altered by the addition of ground rubber particles. More delayed crack growth was observed with an increasing loading volume and decreasing particle size of the ground rubber powders, and this behavior was more prominent in SBR than in NR compounds. Tangent delta, a direct measure of internal energy dissipation, increased with an increasing loading volume of the ground rubber particles. The abrasion rate of ground rubber‐filled compounds was more dependent on the size of the abrasion pattern than on the loading level or particle size of the ground rubber powders. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2491–2500, 2002  相似文献   

15.
Abstract

Bis-(triethoxysilylpropyl)-tetrasulfane functionalised carbon nanotubes (t-CNTs) were used as compatibiliser along with liquid isoprene rubber (LIR) in the natural rubber (NR)/polybutadiene rubber (BR) blend. Their reinforcing and compatibilising effects were evaluated by mechanical, fatigue crack growth resistance properties and blend homogeneity. Scanning electron microscope and transmission electron microscope showed enhanced interfacial adhesion between the binary rubber phases and improved dispersion of the minor phase in the rubber blend respectively with the co-existence of LIR and carbon nanotubes. The tensile strength of the carbon black (CB) filled NR/BR blend reached its optimum when 3 phr CB was replaced with an equal amount of t-CNTs in the presence of 7 phr LIR, while the fatigue crack growth resistance property achieved its maximum in the presence of 3 phr LIR. This interesting co-compatibilisation behaviour of t-CNTs and LIR suggests that t-CNTs have a better effect than CB with the assistance of LIR, which is an effective plasticiser in the NR/BR blend.  相似文献   

16.
A relationship between heat generation of filled rubber vulcanizates and hysteresis loss, specific heat, thermal conductivity, modulus, filler loading, structure, and surface area of the filler, the temperature difference between application temperature and glass transition temperature, frequency, temperature difference between the wall and the environment, stress, and stroke amplitude were developed. Styrenebutadiene rubber (SBR) and natural rubber (NR) vulcanizates were used that had variations of loading of carbon black, silica, resin and coupling agent, types of filler, level of curatives, and cure time. The derived equation was verified with a set of a few unknown SBR and NR vulcanizates, and also by varying the stress and stroke amplitudes in the heat generation experiment. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1541–1555, 1997  相似文献   

17.
A tire thread formulation for heavy‐duty trucks containing SBR/BR rubber blend and varying proportions of silica/clay fillers including a silane‐coupling agent have been investigated. The various mixes were compounded in a Banbury ‘O’ mixer and vulcanized using the EV‐system. Silica/clay (80/0) served as the control mix. The oscillating disc rheometer (ODR) was used in determination of cure characteristics. Substitution of silica (80 phr) with china clay up to 40 phr increased the cure rate of the rubber blend mixes as well as their maximum torque level (Tmax). Tmax was observed to be highest at a filler blend ratio of 40/40 phr. Synergism between silica and clay at this filler blend mixture is suggested to be responsible for the observation. The heat buildup was reduced from 43 to 20°C as the clay content increased. Results also showed that the rubber blend compound containing silica/clay (60/20) filler blend in the stated ratio exhibited the best balance of properties in the critical parameters such as the absolute torque level (69.5 dNm), heat buildup (39°C), and abrasion resistance (0.574 mg.loss/1,000 rev). The rate of depreciation of abrasion resistance of rubber blend compound as the clay content increased was found to be 0.035 mg loss/1,000 rev as silica is substituted with one part of china clay phr. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1024–1028, 2004  相似文献   

18.
The melt processability and physico‐mechanical properties of blends of natural rubber (NR) and ethylene propylene diene rubber (EPDM) containing different dosages (0–10 phr) of phosphorylated cardanol prepolymer (PCP) were studied in unfilled and china‐clay‐filled mixes. The plasticizing effect of PCP in the blends was evidenced by progressive reduction in power consumption of the mixing and activation energy for melt flow with an increase in the dosage of PCP. The PCP‐modified blend vulcanizates showed higher tensile properties and tear strength despite a decrease in the chemical crosslink density (CLD) index. This is presumably due to the formation of a crosslinked network structure of PCP with the rubbers and improved dispersion of the filler particles in the rubber matrix, as evidenced by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Thermogravimetric analysis showed an increase in thermal stability of the blend vulcanizate in presence of 5 phr of PCP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5123–5130, 2006  相似文献   

19.
The incompatibility between hydrophilic silica and hydrophobic rubber is an important problem on using silica in nonpolar rubber. In this study, hydroxyl telechelic natural rubber (HTNR) that contains hydroxyl‐terminated groups was introduced into silica‐reinforced natural rubber (NR) in order to improve the bonding strength between rubber and silica. The properties of silica‐reinforced NR compounds and vulcanizates as a function of varying silica contents were evaluated at a fixed HTNR concentration at 8% wt/wt of silica content. The results show that the improvement of silica dispersion and decreasing of filler–filler interactions (Payne effect) were obtained in the NR compounds and vulcanizates with HTNR addition. The enhancements in tensile properties, crosslink density, abrasion resistance, heat build‐up, and thermal properties of the silica‐reinforced NR vulcanizates with added HTNR confirmed that HTNR performed good as interfacial modifier of silica. In the study, the optimum properties of silica‐reinforced NR vulcanizate were achieved at 30 phr silica with 2.4 phr HTNR. However, HTNR still showed poorer efficiency than the synergy between commercial silane coupling agent, bis [3‐(triethoxysilyl) propyl] tetrasulphide (TESPT) and diphenylguanidine (DPG) when used in silica‐reinforced NR vulcanizate. J. VINYL ADDIT. TECHNOL., 26:291–303, 2020. © 2019 Society of Plastics Engineers  相似文献   

20.
Zinc butyl xanthate [Zn(bxt)2] was prepared in the laboratory. The effect of this xanthate with zinc diethyl dithiocarbamate (ZDC) on the vulcanization of natural rubber (NR), polybutadiene rubber (BR), and NR/BR blend has been studied at different temperatures. The amounts of Zn (bxt)2 and ZDC in the compounds were optimized by varying the amount of ZDC from 0.75 to 1.5 phr and Zn (bxt)2 from 0.75 to 1.5 phr. The cure characteristics were also studied. HAF filled NR, BR, and NR/BR blend compounds were cured at different temperatures from 60 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density and elongation at break, compression set, abrasion resistance, etc. were evaluated. The results show that the mechanical properties of 80NR/20BR blends are closer to that of NR vulcanizates, properties of 60NR/40BR blends are closer to BR vulcanizates, while the 70NR/30BR blends show an intermediate property. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3516–3520, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号