首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
The development of drug resistance remains a critical problem for current HIV‐1 antiviral therapies, creating a need for new inhibitors of HIV‐1 replication. We previously reported on a novel anti‐HIV‐1 compound, N2‐(phenoxyacetyl)‐N‐[4‐(1‐piperidinylcarbonyl)benzyl]glycinamide ( 14 ), that binds to the highly conserved phosphatidylinositol (4,5)‐bisphosphate (PI(4,5)P2) binding pocket of the HIV‐1 matrix (MA) protein. In this study, we re‐evaluate the hits from the virtual screen used to identify compound 14 and test them directly in an HIV‐1 replication assay using primary human peripheral blood mononuclear cells. This study resulted in the identification of three new compounds with antiviral activity; 2‐(4‐{[3‐(4‐fluorophenyl)‐1,2,4‐oxadiazol‐5‐yl]methyl})‐1‐piperazinyl)‐N‐(4‐methylphenyl)acetamide ( 7 ), 3‐(2‐ethoxyphenyl)‐5‐[[4‐(4‐nitrophenyl)piperazin‐1‐yl]methyl]‐1,2,4‐oxadiazole ( 17 ), and N‐[4‐ethoxy‐3‐(1‐piperidinylsulfonyl)phenyl]‐2‐(imidazo[2,1‐b][1,3]thiazol‐6‐yl)acetamide ( 18 ), with compound 7 being the most potent of these hits. Mechanistic studies on 7 demonstrated that it directly interacts with and functions through HIV‐1 MA. In accordance with our drug target, compound 7 competes with PI(4,5)P2 for MA binding and, as a result, diminishes the production of new virus. Mutation of residues within the PI(4,5)P2 binding site of MA decreased the antiviral effect of compound 7 . Additionally, compound 7 displays a broadly neutralizing anti‐HIV activity, with IC50 values of 7.5–15.6 μM for the group M isolates tested. Taken together, these results point towards a novel chemical probe that can be used to more closely study the biological role of MA and could, through further optimization, lead to a new class of anti‐HIV‐1 therapeutics.  相似文献   

3.
Nineteen new halogenated diarylpyridinamine (DAPA) analogues modified at the phenoxy C‐ring were synthesized and evaluated for anti‐HIV activity and certain drug‐like properties. Ten compounds showed high anti‐HIV activity (EC50<10 nM ). In particular, (E)‐6‐(2′′‐bromo‐4′′‐cyanovinyl‐6′′‐methoxy)phenoxy‐N2‐(4′‐cyanophenyl)pyridin‐2,3‐diamine ( 8 c ) displayed low‐nanomolar antiviral potency (3–7 nM ) against wild‐type and drug‐resistant viral strains bearing the E138K or K101E mutations, which are associated with resistance to rilvipirine ( 1 b ). Compound 8 c exhibited much lower resistance fold changes (RFC: 1.1–2.1) than 1 b (RFC: 11.8–13.0). Compound 8 c also exhibited better metabolic stability (in vitro half‐life) than 1 b in human liver microsomes, possessed low lipophilicity (clog D: 3.29; measured log P: 3.31), and had desirable lipophilic efficiency indices (LE>0.3, LLE>5, LELP<10). With balanced potency and drug‐like properties, 8 c merits further development as an anti‐HIV drug candidate.  相似文献   

4.
The human immunodeficiency virus 1 (HIV-1) virion infectivity factor (Vif) protein, essential for in vivo viral replication, protects the virus from innate antiviral cellular factor apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G (APOBEC3G; A3G) and is an attractive target for the development of novel antiviral therapeutics. We have evaluated the structure-activity relationships of N-(2-methoxyphenyl)-2-((4-nitrophenyl)thio)benzamide (RN-18), a small molecule recently identified as an inhibitor of Vif function that blocks viral replication only in nonpermissive cells expressing A3G, by inhibiting Vif-A3G interactions. Microwave-assisted cross-coupling reactions were developed to prepare a series of RN18 analogues with diverse linkages and substitutions on the phenyl rings. A dual cell-based assay system was used to assess antiviral activity against wild-type HIV-1 in both nonpermissive (H9) and permissive (MT4) cells that also allowed evaluation of specificity. In general, variations of phenyl substitutions were detrimental to antiviral potency and specificity, but isosteric replacements of amide and ether linkages were relatively well tolerated. These structure-activity relationship data define structural requirements for Vif-specific activity, identify new compounds with improved antiviral potency and specificity, and provide leads for further exploration to develop new antiviral therapeutics.  相似文献   

5.
Among the many prodrug approaches aimed at delivering nucleoside monophosphates into cells, the phosphoramidate ProTide approach is one that has shown success, which has made it possible for some of the phosphoramidates to enter into clinical trials. Herein, we report the synthesis and antiviral activity of a series of phosphoramidate ProTides designed to bypass the thymidine kinase (TK) dependence of the parent nucleoside analogues. Phosphoramidate derivatives of (E)‐5‐(2‐bromovinyl)‐2′‐deoxyuridine (BVDU) that contain L ‐alanine or pivaloyloxymethyl iminodiacetate (IDA‐POM) exhibit anti‐HSV‐1 and anti‐VZV activity in cell cultures, but they largely lost antiviral potency against TK‐deficient virus strains. Among deazapurine nucleosides and their phosphoramidate derivatives, the 7‐deazaadenine containing nucleosides and their phosphoramidate triester derivatives showed weak antiviral activity against VZV. Apparently, intracellular nucleotide delivery with these phosphoramidates is partly successful. However, none of the compound prodrugs showed superior activity to their parent drugs.  相似文献   

6.
7.
8.
Although human cytomegalovirus (HCMV) infection is mostly asymptomatic for immunocompetent individuals, it remains a serious threat for those who are immunocompromised, in whom it is associated with various clinical manifestations. The therapeutic utility of the few available anti‐HCMV drugs is limited by several drawbacks, including cross‐resistance due to their common mechanism of action, i.e., inhibition of viral DNA polymerase. Therefore, compounds that target other essential viral events could overcome this problem. One example of this is the 6‐aminoquinolone WC5 , which acts by directly blocking the transactivation of essential viral Early genes by the Immediate‐Early 2 (IE2) protein. In this study, the quinolone scaffold of the lead compound WC5 was investigated in depth, defining more suitable substituents for each of the scaffold positions explored and identifying novel, potent and nontoxic compounds. Some compounds showed potent anti‐HCMV activity by interfering with IE2‐dependent viral E gene expression. Among them, naphthyridone 1 was also endowed with potent anti‐HIV activity in latently infected cells. Their antiviral profile along with their innovative mechanism of action make these anti‐HCMV quinolones a very promising class of compounds to be exploited for more effective antiviral therapeutic treatment.  相似文献   

9.
10.
2′‐Fluoro‐2′‐deoxyguanosine has been reported to have potent anti‐influenza virus activity in vitro and in vivo. Herein we describe the synthesis and biological evaluation of 6‐modified 2′‐fluoro‐2′‐deoxyguanosine analogues and their corresponding phosphoramidate ProTides as potential anti‐influenza virus agents. Whereas the parent nucleosides were devoid of antiviral activity in two different cellular assays, the 5′‐O‐naphthyl(methoxy‐L ‐alaninyl) ProTide derivatives of 6‐O‐methyl‐2′‐fluoro‐2′‐deoxyguanosine, 6‐O‐ethyl‐2′‐fluoro‐2′‐deoxyguanosine, and 2′‐deoxy‐2′‐fluoro‐6‐chloroguanosine, and the 5′‐O‐naphthyl(ethoxy‐L ‐alaninyl) ProTide of 6‐O‐ethyl‐2′‐fluoro‐2′‐deoxyguanosine displayed antiviral EC99 values of ~12 μM . The antiviral results are supported by metabolism studies. Rapid conversion into the L ‐alaninyl metabolite and then 6‐modified 2′‐fluoro‐2′‐deoxyguanosine 5′‐monophosphate was observed in enzymatic assays with yeast carboxypeptidase Y or crude cell lysate. Evidence for efficient removal of the 6‐substituent on the guanine part was provided by enzymatic studies with adenosine deaminase, and by molecular modeling of the nucleoside 5′‐monophosphates in the catalytic site of a model of ADAL1, thus indicating the utility of the double prodrug concept.  相似文献   

11.
Antisense oligodeoxynucleotides (ODNs) are short synthetic DNA polymers complementary to a target RNA sequence. They are commonly designed to halt a biological event, such as translation or splicing. ODNs are potentially useful therapeutic agents for the treatment of different human diseases. Carbohydrate–ODN conjugates have been reported to improve the cell‐specific delivery of ODNs through receptor mediated endocytosis. We tested the anti‐HIV activity and biochemical properties of the 5′‐end glucose‐conjugated GEM 91 ODN targeting the initiation codon of the gag gene of HIV‐1 RNA in cell‐based assays. The conjugation of a glucose residue significantly reduces the immunostimulatory effect without diminishing its potent anti‐HIV‐1 activity. No significant effects were observed in either ODN stability in serum, in vitro degradation of antisense DNA–RNA hybrids by RNase H, cell toxicity, cellular uptake and ability to interfere with genomic HIV‐1 dimerisation.  相似文献   

12.
In ongoing studies towards novel hepatitis C virus (HCV) therapeutics, inhibitors of nonstructural protein 5A (NS5A) were evaluated. Specifically, starting from previously reported lead compounds, peripheral substitution patterns of a series of biaryl‐linked pyrrolidine NS5A replication complex inhibitors were probed and structure–activity relationships were elucidated. Using molecular modelling and a supercritical fluid chromatographic (SFC) technique, intramolecular H‐bonding and peripheral functional group topology were evaluated as key determinants of activity and membrane permeability. The novel compounds exhibited retained potency as compared with the lead compounds, and also showed promising results against a panel of resistance viruses. Together, the results of the study take us a step closer towards understanding the potency of daclatasvir, a clinical candidate upon which the compounds were based, and to designing improved analogues as second‐generation antiviral agents targeting NS5A.  相似文献   

13.
Intrinsically disordered regions (IDRs) are preferred sites for post‐translational modifications essential for regulating protein function. The enhanced local mobility of IDRs facilitates their observation by NMR spectroscopy in vivo. Phosphorylation events can occur at multiple sites and respond dynamically to changes in kinase–phosphatase networks. Here we used real‐time NMR spectroscopy to study the effect of kinases and phosphatases present in Xenopus oocytes and egg extracts on the phosphorylation state of the “unique domain” of c‐Src. We followed the phosphorylation of S17 in oocytes, and of S17, S69, and S75 in egg extracts by NMR spectroscopy, MS, and western blotting. Addition of specific kinase inhibitors showed that S75 and S69 are phosphorylated by CDKs (cyclin‐dependent kinases) differently from Cdk1. Moreover, although PKA (cAMP‐dependent protein kinase) can phosphorylate S17 in vitro, this was not the major S17 kinase in egg extracts. Changes in PKA activity affected the phosphorylation levels of CDK‐dependent sites, thus suggesting indirect effects of kinase–phosphatase networks. This study provides a proof‐of‐concept of the use of real‐time in vivo NMR spectroscopy to characterize kinase/phosphatase effects on intrinsically disordered regulatory domains.  相似文献   

14.
Progression through the cell division cycle is controlled by a family of cyclin‐dependent kinases (CDKs), the activity of which depends on their binding to regulatory partners (cyclins A–H). Deregulation of the activity of CDKs has been associated with the development of infectious, neurodegenerative, and proliferative diseases such as Alzheimer's, Parkinson's, or cancer. Most cancer cells contain mutations in the pathways that control the activity of CDKs. This observation led this kinase family to become a central target for the development of new drugs for cancer therapy. A range of structurally diverse molecules has been shown to inhibit the activity of CDKs through their activity as ATP antagonists. Nevertheless, the ATP binding sites on CDKs are highly conserved, limiting the kinase specificity of these inhibitors. Various genetic and crystallographic approaches have provided essential information about the mechanism of formation and activation of CDK–cyclin complexes, providing new ways to implement novel research strategies toward the discovery of new, more effective and selective drugs. Herein we review the progress made in the development of ATP‐noncompetitive CDK–cyclin inhibitors.  相似文献   

15.
Dengue is a systemic viral infection that is transmitted to humans by Aedes mosquitoes. No vaccines or specific therapeutics are currently available for dengue. Lycorine, which is a natural plant alkaloid, has been shown to possess antiviral activities against flaviviruses. In this study, a series of novel lycorine derivatives were synthesized and assayed for their inhibition of dengue virus (DENV) in cell cultures. Among the lycorine analogues, 1‐acetyllycorine exhibited the most potent anti‐DENV activity (EC50=0.4 μM ) with a reduced cytotoxicity (CC50>300 μM ), which resulted in a selectivity index (CC50/EC50) of more than 750. The ketones 1‐acetyl‐2‐oxolycorine (EC50=1.8 μM ) and 2‐oxolycorine (EC50=0.5 μM ) also exhibited excellent antiviral activities with low cytotoxicity. Structure–activity relationships for the lycorine derivatives against DENV are discussed. A three‐dimensional quantitative structure–activity relationship model was established by using a comparative molecular‐field analysis protocol in order to rationalize the experimental results. Further modifications of the hydroxy group at the C1 position with retention of a ketone at the C2 position could potentially lead to inhibitors with improved overall properties.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV‐1) uses CD4 and the co‐receptor CCR5 or CXCR4 in the process of cell entry. The negatively charged extracellular domains of CXCR4 (CXCR4‐ED) interact with positive charges on the V3 loop of gp120, facilitating binding via electrostatic interactions. The presence of highly conserved positively charged residues in the V3 loop suggests that CXCR4‐ED‐derived inhibitors might be broadly effective inhibitors. Synthetic peptide derivatives were evaluated for anti‐HIV‐1 activity. The 39‐mer extracellular N‐terminal region (NT) was divided into three fragments with 10‐mer overlapping sites ( N1 – N3 ), and these linear peptides were synthesized. Peptide N1 contains Met 1–Asp 20 and shows significant anti‐HIV‐1 activity. Extracellular loops 1 and 2 (ECL1 and 2) were mimicked by cyclic peptides C1 and C2 , which were synthesized by chemoselective cyclization. Cyclic peptides C1 and C2 show higher anti‐HIV‐1 activity than their linear peptide counterparts, L1 and L2 . The cytotoxicities of C1 and C2 are lower than those of L1 and L2 . These results indicate that Met 1–Asp 20 segments of the NT and cyclic peptides of ECL1 and ECL2 are potent anti‐HIV‐1 drug candidates.  相似文献   

17.
Ruthenium complexes are currently considered to be among the most promising alternatives to platinum anticancer drugs. In this work, thirteen structural analogues and organelle/receptor‐targeting peptide bioconjugates of a cytotoxic bis(dppz)‐RuII complex [Ru(dppz)2(CppH)](PF6)2 ( 1 ) were prepared, characterized, and assessed for their cytotoxicity and cellular localization (CppH=2‐(2′‐pyridyl)pyrimidine‐4‐carboxylic acid; dppz=dipyrido[3,2‐a:2′,3′‐c]phenazine). It was observed that structural modifications (lipophilicity, charge, and size‐based) result in the cytotoxic potency of 1 being compromised. Confocal microscopy studies revealed that unlike 1 , the screened complexes/bioconjugates do not have a preferential accumulation in mitochondria. The results of this important structure–activity relationship strongly support our initial hypothesis that accumulation in mitochondria is crucial for 1 to exert its cytotoxic action.  相似文献   

18.
19.
AMOP‐H‐OH (sazetidine‐A; 6‐[5‐(azetidin‐2‐ylmethoxy)pyridin‐3‐yl]hex‐5‐yn‐1‐ol) and some sulfur‐bearing analogues were tested for their activities in vitro against human α4β2‐, α4β4‐, α3β4*‐ and α1*‐nicotinic acetylcholine receptors (nAChRs). AMOP‐H‐OH was also assessed in an antidepressant efficacy model. AMOP‐H‐OH and some of its analogues have high potency and selectivity for α4β2‐nAChRs over other nAChR subtypes. Effects are manifested as partial agonism, perhaps reflecting selectivity for high sensitivity (α4)3(β2)2‐nAChRs. More prolonged exposure to AMOP‐H‐OH and its analogues produces inhibition of subsequent responses to acute challenges with full nicotinic agonists, again selectively for α4β2‐nAChRs over other nAChR subtypes. The inhibition is mediated either via antagonism or desensitization of nAChR function, but the degree of inhibition of α4β2‐nAChRs is limited by the partial agonist activity of the drugs. Certain aspects of the in vitro pharmacology suggest that AMOP‐H‐OH and some of its analogues have a set of binding sites on α4β2‐nAChRs that are distinct from those for full agonists. The in vitro pharmacological profile suggests that peripheral side effects of AMOP‐H‐OH or its analogues would be minimal and that their behavioral effects would be dominated by central nAChR actions. AMOP‐H‐OH also has profound and high potency antidepressant‐like effects in the forced swim test. The net action of prolonged exposure to AMOP‐H‐OH or its analogues, as for nicotine, seems to be a selective decrease in α4β2‐nAChR function. Inactivation of nAChRs may be a common neurochemical endpoint for nicotine dependence, its treatment, and some of its manifestations, including relief from depression.  相似文献   

20.
In a follow‐up study to our reports of N‐cinnamoylated chloroquine and quinacrine analogues as promising dual‐stage antimalarial leads with high in vitro potency against both blood‐stage Plasmodium falciparum and liver‐stage Plasmodium berghei, we decided to investigate the effect of replacing the cinnamoyl moiety with other acyl groups. Thus, a series of N‐acylated analogues were synthesized, and their activities against blood‐ and liver‐stage Plasmodium spp. were assessed along with their in vitro cytotoxicities. Although the new N‐acylated analogues were found to be somewhat less active and more cytotoxic than their N‐cinnamoylated counterparts, they equally displayed nanomolar activities in vitro against blood‐stage drug‐sensitive and drug‐resistant P. falciparum, and significant in vitro liver‐stage activity against P. berghei. Therefore, it is demonstrated that simple N‐acylated surrogates of classical antimalarial drugs are promising dual‐stage antimalarial leads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号