首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新型全集成CMOS射频接收器低噪声电源系统   总被引:3,自引:1,他引:2  
针对CMOS射频接收器芯片,提出了一种新型全集成电源系统方案,相对于传统低压差线性稳压器(LDO)电源,噪声性能显著提高。在对片内模块电源域合理划分的基础上,设计了低噪声的新型电压源取代传统的带隙基准源(Bandgap)作为LDO提供参考电压,并通过对参考电压值巧妙设计,避免了使用LDO电阻反馈网络来调节输出电压,进一步减小了电阻引入的噪声。结合数字校准电路,本系统可以为片内各电路提供准确的电源电压。该设计在Smic0.18m工艺下后真结果表明,在100kHz处,新型参考电压源输出噪声为16.38nV/√Hz,片内电源输出噪声仅为21.28nV/√Hz。  相似文献   

2.
Equivalent input current noise and bandwidth are the most relevant parameters qualifying a low‐noise transimpedance amplifier. In the conventional topology consisting of an operational amplifier in a shunt‐shunt configuration, the equivalent input noise decreases as the feedback resistor (RF), which also sets the gain, increases. Unfortunately, as RF increases above a few MΩ, as it is required for obtaining high sensitivity, the bandwidth of the system is set by the parasitic capacitance of RF and reduces as RF increases. In this paper, we propose a new topology that allows overcoming this limitation by employing a large‐bandwidth voltage amplifier together with a proper modified feedback network for compensating the effect of the parasitic capacitance of the feedback resistance. We experimentally demonstrate, on a prototype circuit, that the proposed approach allows to obtain a bandwidth in excess of 100 kHz and an equivalent input noise of about 4 fA/ , corresponding to the current noise of the 1 GΩ resistor that is part of the feedback network. The new approach allows obtaining larger bandwidth with respect to those obtained in previously proposed configurations with comparable background noise. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This letter describes a low‐voltage low‐power (LV‐LP) 2.4‐GHz mixer for Industrial, Scientific and Medical (ISM) band wireless applications. The approach is based on a two‐stage amplifier, and the Gilbert switch stage is inserted between the two amplifier stages. The proposed amplifier‐based mixer delivers a remarkable conversion gain of 13 dB with a local oscillator (LO) power of 7 dBm, while consuming only 1.05‐mW DC power from a 0.8‐V supply voltage. The input‐referred third‐order intercept point (IIP3) of the mixer is 3.82 dBm, and the chip area is only 0.429 mm2. The results indicate that this mixer is suitable for the low‐voltage low‐power applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This article presents a new CMOS receiver analog front‐end for short‐reach high‐speed optical communications, which compensates the limited product bandwidth length of 1‐mm step‐index plastic optical fiber (SI‐POF) channels (45 MHz · 100 m) and the required large‐diameter high‐capacitance Si PIN photodetector (0.8 mm–3 pF). The proposed architecture, formed by a transimpedance amplifier and a continuous‐time equalizer, has been designed in a standard 0.18‐µm CMOS process with a single supply voltage of only 1 V, targeting gigabit transmission for simple no‐return‐to‐zero modulation consuming less than 23 mW. Experimental results validate the approach for cost‐effective gigabit SI‐POF transmission. Comparative analysis with previously reported POF receivers has been carried out by introducing a useful figure of merit. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Low‐frequency (flicker) noise is one of the most important issues in the design of direct‐conversion zero‐IF front‐ends. Within the front‐end building blocks, the direct‐conversion mixer is critical in terms of flicker noise, since it performs the signal down‐conversion to baseband. This paper analyzes the main sources of low‐frequency noise in Gilbert‐cell‐based direct‐conversion mixers, and several issues for minimizing the flicker noise while keeping a good mixer performance in terms of gain, noise figure and power consumption are introduced in a quantitative manner. In order to verify these issues, a CMOS Gilbert‐cell‐based zero‐IF mixer has been fabricated and measured. A flicker noise as low as 10.4 dB is achieved (NF at 10 kHz) with a power consumption of only 2 mA from a 2.7 V power supply. More than 14.6 dB conversion gain and noise figure lower than 9 dB (DSB) are obtained from DC to 2.5 GHz with an LO power of ?10 dBm, which makes this mixer suitable for a multi‐standard low‐power zero‐IF front‐end. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, a low‐power, low‐noise logarithmic preamplifier for biopotential and neural recording application is presented. The amplifier is based on a linear limit logarithmic amplifier technique, and an active filter as a DC cancellation filter has been included to its input in order to eliminate DC offsets, which are produced at the electrode–tissue interface. This system has been simulated in a UMC standard 90‐nm 1P9M CMOS process. Five dual gain stages are used to produce the required linear limit logarithmic amplifier. The dynamic range of the amplifier is measured to be 48 dB which covers the signals with amplitude from 20 μV to 5 mV. The amplifier consumes 23.5 μW from a 1.2‐V power supply and has a maximum gain of 69.8 dB. The simulated input referred noise is 5.3 μV over 0.1 Hz to 20 kHz. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a front‐end receiver with a dual cross‐couple technique for Medical Implant Communication Services M applications, using a standard complementary metal‐oxide semiconductor process. A lower‐power design is achieved using a resistive feedback, gm‐boosting technique along with a current reuse topology in the receiver's transconductance stage. In addition, a dual cross‐coupling configuration applied at the input stage increases overall gain performance and reduces power consumption. The measured power dissipation of the low‐noise amplifier is only 0.51 mW. The conversion gain of the receiver is 19.74 dB, while the radio frequency and local oscillator frequencies are respectively 403.5 and 393.5 MHz, and the LO power is 0 dBm. The chip exhibits excellent isolation below −70 dB from LO to intermediate frequency and LO to radio frequency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A new topology of bipolar low noise amplifier (LNA) for RF applications, named base coupled differential (BCD), is presented. The proposed approach is compared by simulation against most classical topologies. The BCD configuration has the key advantage to join an integrated matching on a single‐ended input with a differential output. This is done by using down‐bond wiring, so that no integrated inductors are needed. The main advantages of this new topology are a drastic area reduction and an increased linearity range (or a reduced biasing current with the same linearity) together with a noise figure (NF) and voltage supply reduction. Particularly, the BCD LNA presented in this paper has been designed for 2.44GHz frequency operation. It is characterized by a NF of 1.93dB, a voltage gain (Av) of 19.5dB, an input impedance of 50Ωa third Input‐referred Intercept Point (IIP3) of ‐7.25dBm and a dissipated power (PD) equal to 19mW. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a novel low‐power CMOS extra low‐frequency (ELF) waveform generator based on an operational trans‐conductance amplifier (OTA). The generator has been designed and fabricated using 2.5‐V devices available in 130‐nm IBM CMOS technology with a ±1.2‐V voltage supply. Using the same topology, two sets of device dimensions and circuit components are designed and fabricated for comparing relative performance, silicon area and power dissipation. The first design consumes 691 μW, while the second design consumes 943 μW using the same voltage supply. This low‐power performance enables the circuit to be used in many micro‐power applications. ELF oscillation is achieved for the two designs being around 3.95 Hz and 3.90 Hz, respectively, with negligible waveform distortion. The measured frequencies agree well with the simulation results. The first design is found to provide overall optimal performance compared to the second design at the expense of higher silicon area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A battery charger with MPPT function for low‐power PV system applications is presented in this study. For effective miniaturization, the battery charger is designed with high‐frequency operation. Some current‐sensing techniques are studied, and their MPPT implementation is compared. A battery charging method is also designed to prolong battery lifetime without the use of battery current sensors. The operation principles and design considerations of the proposed PV charger are analyzed and discussed in detail. A laboratory prototype is implemented and tested to verify the feasibility of the proposed scheme. Experimental results show that high MPPT accuracy and conversion efficiency can be simultaneously achieved under high‐frequency operation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This paper describes the design, fabrication, and testing of a DC–3 GHz ultra‐wideband low‐noise amplifier (LNA) using Avago ATF‐54143 enhanced‐mode pseudomorphic high‐electron mobility transistor. Negative feedback network is introduced to ensure unconditional stability of the LNA over the full waveband. Simulation results show that the LNA provides a gain varying between 14.872 and 14.052 dB, a noise figure (NF) of less than 2.2 dB, and voltage standing wave ratios (VSWRs) approaching 2. A high simulated output third‐order intercept point (OIP3) of >30.2 dBm is achieved. In contrast, in 1‐dB bandwidth of DC–3 GHz, the measured gain is nominal at 13.10 dB. The obtained NF changes in a small range of 2–2.178 dB, and the measured VSWRs are no more than 1.64, which are better than obtained from simulation results. At the same time, OIP3 at 1, 2, and 3 GHz is 30.3, 29.13, and 29.34 dBm, respectively, while the output at the 1‐dB compression point (P 1dB ) is 15.43, 14.83, and 14.33 dBm, respectively. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

12.
The main disadvantage of the voltage‐based maximum power point tracking (VMPPT) method is in the way the photovoltaic (PV) array is disconnected from the load when sampling open‐circuit voltage, which inevitably results in power loss. Another disadvantage is in case of rapid irradiance variation, where the duration between two successive samplings is too long, leading to considerable loss. To overcome these problems, this paper proposes a low‐cost analog VMPPT circuit that is designed on the basis of an ultralow‐power sample‐and‐hold circuit with the least hardware complexity, which has not been reported before. Furthermore, the method of determining the sampling frequency and time interval of the sampling mode is investigated. Experimental verification with a series of different PV power sources is likewise conducted. The experimental results confirm that the proposed MPPT circuit can operate over a wide range of PV power and can adapt quickly to the changing environment. The disconnection energy loss is reduced significantly, with a high system efficiency of up to 95.9%. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

13.
A low‐power CMOS receiver baseband analog (BBA) circuit based on alternating filter and gain stage is reported. For the given specifications of the BBA block, optimum allocation of the gain, input‐referred third‐order intercept point (IIP3), and noise figure (NF) of each block is performed to minimize current consumption. The fully integrated receiver BBA chain is fabricated in 0.18µm CMOS technology and IIP3 of 30 dBm with a maximum gain of 59 dB and NF of 31 dB are obtained at 3.6 mW power consumption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A low‐power technique for high‐resolution comparators is introduced. In this technique, p‐type metal‐oxide‐semiconductor field‐effect transistors are employed as the input of the latch of the comparator just like the input of the preamplifier. The latch and preamplifier stages are activated in a special pattern using an inverter‐based controller. Unlike the conventional comparator, the preamplification delay can be set to an optimum low value even if after the preamplification, the output voltages is less than n‐channel metal‐oxide semiconductor voltage threshold. As a result, the proposed comparator reduces the power consumption significantly and enhances the speed. The speed and power benefits of the proposed comparator were verified using analytical derivations, PVT corners, and post layout simulations. The results confirm that the introduced technique reduces the power consumption by 60%, also, provides 57% better comparison speed for an input common mode voltage (Vcm) range of 0‐Vdd/2.  相似文献   

15.
For low‐power applications, such as household photovoltaic panels, the efficiency and reliability of the distributed generation system is an important issue. A high‐efficiency inverter topology derived from the normal full‐bridge circuit is proposed for grid‐connected photovoltaic applications. In the proposed topology, a couple of diodes are added in parallel with the grid‐frequency switches as freewheeling diodes working during the positive and negative half‐cycles of the utility voltage, respectively, thus preventing the output current from flowing through the body diodes of switches. Because of its natural configuration, simple operation, and three‐level function, the proposed topology features a high level of efficiency and reliability over a wide voltage range, and allows the best cost–effective ratio. These characteristics are compared with those of other existing advanced topologies, followed by a theoretical analysis on the output filter and the implemented circuit of modulation scheme. Experimental results from a 3 kW hardware prototype verify the feasibility of the proposed solution. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

16.
A new integrated, low‐noise, low‐power, and area‐efficient multichannel receiver for magnetic resonance imaging (MRI) is described. The proposed receiver presents an alternative technique to overcome the use of multiple receiver front‐ends in parallel MRI. The receiver consists of three main stages: low‐noise pre‐amplifier, quadrature down‐converter, and a band pass filter (BPF). These components are used to receive the nuclear magnetic resonance signals from a 3 × 3 array of micro coils. These signals are combined using frequency domain multiplexing (FDM) method in the pre‐amplifier and BPF stages, then amplified and filtered to remove any out‐of‐band noise before providing it to an analog‐to‐digital converter at the low intermediate frequency stage. The receiver is designed using a 90 nm CMOS technology to operate at the main B0 magnetic field of 9.4 T, which corresponds to 400 MHz. The receiver has an input referred noise voltage of 1.1 nV/√Hz, a total voltage gain of 87 dB, a power consumption of 69 mA from a 1 V supply voltage, and an area of 305 µm × 530 µm including the reference current and bias voltage circuits. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A continuous‐time (CT) ΣΔ modulator for sensing and direct analog‐to‐digital conversion of nA‐range (subthreshold) currents is presented in this work. The presented modulator uses a subthreshold technique based on subthreshold source‐coupled logic cells to efficiently convert subthreshold current to digital code without performing current‐to‐voltage conversion. As a benefit of this technique, the current‐sensing CT ΣΔ modulator operates at low voltage and consumes very low power, which makes it convenient for low‐power and low‐voltage current‐mode sensor interfaces. The prototype design is implemented in a 0.18 µm standard complementary metal‐oxide semiconductor technology. The modulator operates with a supply voltage of 0.8 V and consumes 5.43 μW of power at the maximum bandwidth of 20 kHz. The obtainable current‐sensing resolution ranges from effective number of bits (ENOB) = 7.1 bits at a 5 kHz bandwidth to ENOB = 6.5 bits at a 20 kHz bandwidth (ENOB). The obtained power efficiency (peak FoM = 1.5 pJ/conv) outperforms existing current‐mode analog‐to‐digital converter designs and is comparable with the voltage‐mode CT ΣΔ modulators. The modulator generates very low levels of switching noise thanks to CT operation and subthreshold current‐mode circuits that draw a constant subthreshold current from the voltage supply. The presented modulator is used as a readout interface for sensors with current‐mode output in ultra low‐power conditions and is also suitable to perform on‐chip current measurements in power management circuits. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
由于某型设备的微波小信号放大需求,需要设计一款高增益微波放大器。本文给出了一种增益大于100 dB的多级放大器设计思路及设计过程,针对此设计进一步讨论了前置放大器、中间级放大器、末级放大器及混频器等各单元的器件的选择,完成了电原理图的设计以及PCB板的布置,最后对该放大器的进行了实测,结果表明该放大器实际总增益在105±0.130.24 dB,增益精度<±0.5 dB,达到了设计要求。目前此放大器已运用于某型发信监测设备中并取得了良好的效果。  相似文献   

19.
A digitally‐assisted constant‐on‐time dynamic‐biasing (COT‐DB) technique has been proposed to enable significant enhancement in dynamic performances, while the average current consumption can be kept to ultralow level. This dynamic‐biasing technique has a predefined magnitude and duration on biasing current boost, which is beneficial to estimate power budget in systems with finite energy source. The proposed technique has been applied to a low‐dropout regulator (LDO) to demonstrate the effectiveness. Experimental results show that significant improvements in settling times during load‐transients and line‐transients are as much as 880×, while the current consumption is only 1.02 μA. In fact, for the same dynamic performances, the average current consumption of LDO with COT‐DB technique can be as low as 0.39% of the LDO with heavy static biasing. The digitally‐assisted implementation of the technique also allows robust augmentation of the technique onto almost all analog systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper it is shown that active‐RC filters whose sensitivity to component tolerances can be minimized by impedance tapering, will also have low output thermal noise. It is shown that impedance tapering will also reduce output thermal noise in OTA‐C filters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号