首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The crystalline structure, morphology, and nonisothermal crystallization behavior of isotactic polypropylene (iPP) with and without a novel rare earth‐containing β‐nucleating agent (WBG) were investigated with wide‐angle X‐ray diffraction, polar optical microscopy, and differential scanning calorimetry. WBG could induce the formation of the β form, and a higher proportion of the β form could be obtained by the combined effect of the optimum WBG concentration and a lower cooling rate. The content of the β form could reach more than 0.90 in a 0.08 wt % WBG nucleated sample at cooling rates lower than 5°C/min. Polar optical microscopy showed that WBG led to substantial changes in both the morphological development and crystallization process of iPP. At all the studied cooling rates, the temperature at which the maximum rate of crystallization occurred was increased by 8–11°C in the presence of the nucleating agent. An analysis of the nonisothermal crystallization kinetics also revealed that the introduction of WBG significantly shortened both the apparent incubation period for crystallization and the overall crystallization time. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
The nucleating ability of p‐cyclohexylamide carboxybenzene (β‐NA) towards isotactic polypropylene (iPP) was investigated by differential scanning calorimetry, X‐ray diffraction, polarized optical microscopy and scanning electron microscopy. β‐NA is identified to have dual nucleating ability for α‐iPP and β‐iPP under appropriate kinetic conditions. The formation of β‐iPP is dependent on the content of β‐NA. The content of β‐phase can reach as high as 96.96% with the addition of only 0.05 wt% β‐NA. Under non‐isothermal crystallization the content of β‐iPP increases with increasing cooling rate. The maximum β‐crystal content is obtained at a cooling rate of 40 °C min–1. The supermolecular structure of the β‐iPP is identified as a leaf‐like transcrystalline structure with an ordered lamellae arrangement perpendicular to the special surface of β‐NA. Under isothermal crystallization β‐crystals can be formed in the temperature range 80–140 °C. The content of β‐crystals reaches its maximum value at a crystallization temperature of 130 °C. © 2012 Society of Chemical Industry  相似文献   

3.
The supermolecular structure of binary isotactic polypropylene/atactic polystyrene (iPP/PS) injection‐molded blends were studied by wide‐angle X‐ray diffraction, differential scanning calorimetry, and optical microscopy. The combination of different methods gives a possibility of analysis of relation between the phase transformation in polypropylene and crystallization parameters. Effect of compatibilization of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) grafted with maleic anhydride (SEBS‐g‐MA) block copolymers in the iPP/PS blends on the structure, nucleation, crystal growth, solidification, and the phase morphology was analyzed. We found that the β‐crystallization tendency of polypropylene matrix can be enhanced by adding atactic polystyrene. However, the incorporation of SEBS‐g‐MA into iPP/PS blends resulted in an important decrease in β‐content of iPP. It is evident that the presence of compatibilizing agent caused a very significant reduction of the α‐spherulite growth rates and the crystal conversion as well as increases of half‐time crystallization in comparison with the iPP/PS systems. The relation between kinetic parameters of crystallization process and polymorphic structure of iPP in blend systems has been satisfactorily explained. Moreover, a strong effect of processing parameters on the β‐phase formation was observed. The results clearly show that at a higher temperature of mold and lower injection speed, the amount of β‐phase of iPP matrix slightly decreases. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
The crystallization kinetics and morphology development of pure isotactic polypropylene (iPP) homopolymer and iPP blended with atactic polypropylene (aPP) at different aPP contents and the isothermal crystallization temperatures were studied with differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy. The spherulitic morphologies of pure iPP and larger amounts of aPP for iPP blends showed the negative spherulite, whereas that of smaller amounts of aPP for the iPP blends showed a combination of positive and negative spherulites. This indicated that the morphology transition of the spherulite may have been due to changes the crystal forms of iPP in the iPP blends during crystallization. Therefore, with smaller amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends increased with increasing aPP and presented a lower degree of perfection of the γ form coexisting with the α form of iPP during crystallization. However, with larger amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends decreased and reduced the γ‐form crystals with increasing aPP. These results indicate that the aPP molecules hindered the nucleation rate and promoted the molecular motion and growth rate of iPP with smaller amounts of aPP and hindered both the nucleation rate and growth rate of iPP with larger amounts of aPP during isothermal crystallization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1093–1104, 2007  相似文献   

5.
A new approach to reinforce and toughen isotactic polypropylene (iPP) with improved processability is evaluated. The concept involves using a crystallizable solvent that, at process temperatures melts, is miscible with the polymer thereby reducing its process viscosity. As the polymer cools, the solvent undergoes thermally induced phase separation (TIPS) to produce crystallites that increase the modulus of the solid through reinforcement and promote an increase in impact resistance by mechanisms similar to rubber‐toughened materials. Tetrabromobisphenol‐A (TBBPA) is introduced to iPP that forms a homogeneous mixture at elevated temperature and acts as a processing aid, but undergoes phase separation and subsequent crystallization upon cooling to form rigid particles which, in turn, acts as a toughening agent at room temperature. A phase diagram constructed with Flory‐Huggins solution thermodynamics shows good agreement with the experimental results. The steady state shear viscosity decreases as TBBPA content increases for the mixtures in melt state, indicating improved processability. The decrease in viscosity enhances crystallization rate of iPP significantly, most likely due to increased diffusivity, while the structure of iPP crystals remain unchanged. Tensile tests show that as TBBPA content increases (up to 15 wt %), the yield stress decreases while elongation at break increases. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Long chain branching polypropylene (LCBPP) with different long chain branching (LCB) contents were prepared by reactive extrusion in the presence of styrene and benzoyl peroxide, and their shear‐induced crystallization behaviors were investigated. The results indicated that the LCB structure extended the relaxation time of LCBPP in the molten state, which led to the formation of β‐form polypropylene under shear and high cooling rate. The content of β‐form (Kβ) increased with the increase of LCB content, shearing rate and cooling rate. The Kβ value of LCBPP3 whose weight average molecular weight was 920,000 g mol?1 could be up to 52.0% with a shear rate of 60 s?1 associated with a cooling rate of 280°C min?1. This study is expected not only to have a deeper understanding of the shear‐induced crystallization behavior of LCBPP, but also provide a new strategy to obtain high level β‐form polypropylene. POLYM. ENG. SCI., 56:240–247, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
This study mainly focuses on the formation of isotactic polypropylene (iPP) blend morphologies with microspheres and distinct bead–string spherulites. iPP microspheres have been prepared by a simple and convenient strategy through either an isothermal or a nonisothermal crystallization process based on the macrophase‐separated structure in molten state of iPP/olefin block copolymer (OBC) blend. The dimension of the iPP spheres can be adjusted easily from about 1 µm to >10 µm by controlling the compatibility and annealing conditions. It was found that any of the following three parameters, the molecular structure of OBC (particularly the octene content), molecular weight of iPP, and annealing condition can be rescaled with others in controlling the dimension of the iPP microspheres. The mechanism of the formation of iPP microspheres was studied in detail. Surprisingly, the typical spinodal decomposition morphology with interconnected or thin sheet structure is the precursor of these microspheres. During the subsequent annealing process, it breaks up and further coarsens into spherical structure. In addition, distinct spherulites with a bead–string substructure have been obtained during the isothermal crystallization. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40863.  相似文献   

8.
A new compound was synthesized by chemical combination of (3‐mercapto)propyl‐heptaisobutyl polyhedral oligomeric silsesquioxane (POSS‐SH) and 1,3:2,4‐bis(3,4‐dimethylbenzylidene) sorbitol (DMDBS) via epichlorohydrin while hydroxyl groups were still retained in the product POSS‐DMDBS. The prepared POSS‐DMDBS was introduced into isotactic polypropylene (iPP) to improve crystallization behaviors of iPP and obtain nanocomposites with suitable mechanical properties. Crystallization and mechanical properties of iPP/POSS‐DMDBS were systematically investigated by wide‐angle X‐ray diffraction, polarization microscopy, atomic force microscopy, differential scanning calorimetry, and tensile tests. The spherulite size of the modified iPP was obviously decreased with the addition of POSS‐DMDBS, while the crystallization temperature was increased by 5°C to 9°C depending on the content of POSS‐DMDBS incorporated. POSS‐DMDBS exhibited relatively higher nucleating efficiency on iPP which is similar to that of DMDBS, confirmed by the increased crystallization temperature. It was also found that the tensile modulus of iPP after adding POSS‐DMDBS increased significantly with respect to pristine iPP, but the elongation values decreased. Introduction of POSS‐DMDBS in content less than 1 wt% could bring about effective influence on the crystallization behaviors of iPP, demonstrating its potential applications . POLYM. ENG. SCI., 57:357–364, 2017. © 2016 Society of Plastics Engineers  相似文献   

9.
It is widely believed that β ‐nucleating agent is beneficial for effectively toughening isotactic polypropylene (iPP). However, for the injection molding process, the shearing and thermo‐mechanical conditions make the nucleation and crystallization process complicated. In this paper, the effects of injection rate on crystallization of β ‐nucleated iPP were studied by scanning electron microscope (SEM), two‐dimensional wide‐angle X‐ray diffraction and differential scanning calorimetry (DSC). It is observed that with increasing injection rate, the content of β ‐crystals exhibits different tendencies in the skin, intermediate layers, and core zone. Specifically, for the intermediate layer, the β ‐crystals content first increases with increasing injection rate to 85 cm·s?1, and begins to decrease afterward. By simulating the injection process, the most likely explanation for the β ‐crystal change is the comparatively high shear rate and low shearing time that the melt experienced. Variations in β ‐form content are mainly responsible for the mechanical properties of β ‐nucleated iPP. The results of this study provide a valuable way to control the iPP toughness in the injection molding process. POLYM. ENG. SCI., 57:172–182, 2017. © 2016 Society of Plastics Engineers  相似文献   

10.
Ziegler–Natta isotactic polypropylene (ZN‐iPP) and metallocene isotactic polypropylene (m‐iPP) were extruded (in ratios of 75/25, 50/50, and 25/75) from one melt twin‐screw extruder to produce three ZN‐iPP/m‐iPP polyblended polymers and, subsequently, spin fibers. In this study, we examined the rheology of the ZN‐iPP/m‐iPP polyblended polymers and the thermal characteristics and crystallinity of the ZN‐iPP/m‐iPP polyblended fibers using gel permeation chromatography, rheometry, differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, density gradient analysis, and extension stress–strain measurement. The apparent melt viscosity of the ZN‐iPP/m‐iPP polyblended polymers revealed positive‐deviation blends. The 50/50 blend of ZN‐iPP/m‐iPP had the highest apparent melt viscosity. For five samples, the complex melt viscosity decreased with the angular frequency, which represented typical non‐Newtonian behavior. The Cole–Cole plot, which consisted of the imaginary part of the complex melt viscosity versus the real part of the complex melt viscosity plot, of the ZN‐iPP/m‐iPP polyblended polymers showed a semicircular relationship with the blend ratios. It indicated that the ZN‐iPP/m‐iPP polyblended polymers were miscible. We analyzed the shear modulus data (G′ vs G″) by plotting them on a log–log scale. The plot revealed almost the same slopes for the ZN‐iPP/m‐iPP polyblended polymers, which indicated a good miscibility between the ZN‐iPP and m‐iPP polymers. The experimental DSC results demonstrate that the ZN‐iPP and m‐iPP polymers constituted a miscible system. The crystallinity and tenacity of the ZN‐iPP/m‐iPP polyblended fibers initially increased and then fell as the m‐iPP content increased. Meanwhile, the 50/50 blend of ZN‐iPP/m‐iPP had the highest crystallinity and tenacity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The structure, morphology, and isothermal crystallization behaviors of polypropylene (PP) prepared with heterogeneous Ziegler‐Natta catalyst at high temperature (100°C) were investigated with differential scanning calorimetry, wide‐angle X‐ray diffraction, temperature‐rising elution fractionation, gel permeation chromatography, and 13C NMR. The results reveal that the crystalline structure changes with variation of the composition of the PP. The isotactic PP (iPP)1 prepared with Et3Al and “TMA‐depleted” methylaluminoxane crystallizes from the melt in the mixtures of the α and β forms, whereas each fraction obtained from pure PP1 does not show β‐PP crystal at the same crystallization condition. In addition, the γ‐PP crystal is appeared for the fractions of low mmmm%‐[mmmm] (mmmm pentad content) values and molecular weight. Moreover, it was found that the iPP2 or iPP3 prepared with Hex3Al crystallizes from the melt in mixtures of the α and γ forms, even at atmospheric pressure and for high molecular weight. The microstructure showed in the PP samples obtained at high temperature could be well explained with the shift in the alkylaluminium‐donor equilibrium reactions at high polymerization temperature. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001  相似文献   

13.
Calcium salts of suberic (Ca‐Sub) and pimelic (Ca‐Pim) acids were synthesized and implemented as in different grades of isotactic polypropylene (iPP). Propylene homopolymer, as well as random and block copolymers containing these additives, crystallized iPP into pure or nearly pure β modification in the isothermal and nonisothermal crystallization experiments. Recently, Ca‐Sub proved to be the most effective β‐nucleating agent of iPP. The Ca‐Sub nucleating agent widens the upper crystallization temperature range of pure β‐iPP formation up to 140°C. In this study the effect of the these additives on the crystallization, melting characteristics, and structure of the PP were studied. The degree of crystallinity of β‐iPP was markedly higher than that of α‐iPP. A widening in the melting peak of the samples crystallized in a high temperature range was first observed and discussed in regard to literature results of the same phenomenon for α‐iPP. The morphology of the β‐iPP samples was revealed by scanning electron microscopy. Independent of the type of polymer or nucleating agent, hedritic structures were found in the early stages of growth of the β‐spherulites. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2357–2368, 1999  相似文献   

14.
The β‐nucleating activity and toughening effect of acrylonitrile–butadiene–styrene (ABS) graft copolymer on isotactic polypropylene (iPP) and the compatibilizing role of maleic anhydride grafted polypropylene (PP‐g‐MAH) on the iPP/ABS blends were investigated. The results show that ABS can induce the formation of β‐crystal in iPP, and its β‐nucleating efficiency depends on its concentration and dispersibility. The relative content of β‐crystal form is up to 36.19% with the addition of 2% ABS. The tensile and impact properties of the iPP were dramatically enhanced by introducing ABS. The incorporation of PP‐g‐MAH into the iPP/ABS blends inhibits the formation of β‐crystal. The crystallization peaks of the blends shift toward higher temperature, due to the heterogeneous nucleation effect of PP‐g‐MAH on iPP. The toughness of iPP/ABS blends improved due to favorable interfacial interaction resulting from the compatibilization of PP‐g‐MAH is significantly better than the β‐crystal toughening effect induced by ABS. POLYM. ENG. SCI., 59:E317–E326, 2019. © 2019 Society of Plastics Engineers  相似文献   

15.
Crystallization behavior of conductive composite has a great effect on the formation of conductive network. But very few studies have exposited, specially on the micro level, the evolution of conductive network during the crystallization of matrix. In this study, the conductive network was found to be destroyed by crystallization behavior of isotactic polypropylene (iPP) matrix, and the carbon black (CB) particles were rejected to the amorphous region or the inter-lamellar of spherulite. By comparison, the low-structure carbon black (LCB) filled system was more sensitive to the crystallization of matrix than the high-structure carbon black (HCB) filled system because of the morphology and interaction force of the CB primary aggregate. A secondary increase in volume resistivity during terminal crystallization was observed in iPP/LCB composite when it isothermally crystallized at a certain temperature. In that case, an analysis of crystallization kinetics of composites through a modified Lauritzen-Hoffman model indicated that the transition from regime I→II in the isothermal crystallization process of iPP matrix showed significant influence on the network formation of LCB particles.  相似文献   

16.
The effect of propylene–ethylene copolymers (PEc) with different ethylene‐unit contents on melting and crystallization behaviors of isotactic‐polypropylene (iPP) were investigated by differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The results show that the addition of PEc decreases significantly crystallization temperature (Tc) of iPP, but slightly affects melting temperature (Tm). With increasing the ethylene‐unit content of the propylene–ethylene copolymers, the decrease in crystallization temperature of iPP is smaller. The PLM results show that the spherulite growth rate decreases with increasing crystallization temperature for iPP and iPP/PEc blends. The higher the ethylene‐unit content of the copolymers is, the lower the spherulite growth rate (G) of iPP/PEc blends is. The influence of the PEc on nucleation rate constant (Kg) and fold surface energy (σe) of iPP was examined by nucleation theory of Hoffman and Lauritzen. The results show that both Kg and σe of iPP/PE20(80/20) and iPP/PE23(80/20) blends are higher than those of iPP, demonstrating that the overall crystallization rate of iPP/PEc blends decreased as compared to that of iPP, resulting from the decrease of the nucleation rate and the spherulite growth rate of iPP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
The isothermal crystallization kinetics of isotactic polypropylene (iPP) and iPP nucleated with the sorbitol derivatives 1,3:2,4‐bis(4‐methyldibenzylidene)sorbitol and 1,3:2,4‐bis(3,4‐dimethylbenzylidene)sorbitol was studied, along with the subsequent melting behavior, as a function of the nucleating agent concentration. The influence of the agents on the crystallization rate, crystallization temperature, and crystallization range was examined. The isothermal crystallization temperature increased, along with the crystallization rate, with increasing nucleating agent concentration. The maximum effect of the additives occurred at concentrations of 0.3% or greater. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2261–2274, 2003  相似文献   

18.
In order to increase the isotactic content of β‐nucleated polypropylene (β‐iPP) and decrease the cost of its production, the investigation and development of novel highly efficient β‐nucleators are important issues. Nano‐CaCO3 was used as a support to prepare a supported β‐nucleator, nano‐CaCO3‐supported calcium pimelate. Fourier transform infrared spectral analysis shows that an in situ chemical reaction takes place between nano‐CaCO3 and pimelic acid. Differential scanning calorimetry results indicate that the crystallization and melting temperatures of β‐phase in supported β‐nucleator‐nucleated iPP are higher than those of calcium pimelate‐nucleated iPP. The β‐nucleating ability of the supported β‐nucleator is little influenced by the cooling rate and crystallization temperature over a wide range. The decreased content of pimelic acid in the supported β‐nucleator slightly decreases the crystallization temperature of iPP but it has no influence on the content of β‐phase in nucleated iPP. A novel supported β‐nucleator has been successfully synthesized via pimelic acid supported on the surface of CaCO3. The crystallization temperature of iPP and melting temperature of β‐phase in iPP nucleated using the supported β‐nucleator are higher than those of iPP nucleated using calcium pimelate. The concept of a supported nucleator will provide a new way to increase the efficiency of polymer additives and to decrease the amounts of them that need to be used by using nanoparticles as supports. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Pure isotactic polypropylene (iPP) and 90/10 wt iPP/ultra high molecular weight polyethylene (UHMWPE) blends, prepared by a novel vibration internal mixer reformed from a coventional internal mixer via parallel superposition of an oscillatory shear on a steady shear, were investigated by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction. After plasticating pure iPP in the vibration field, the number of β form crystals of iPP was increased. The β form exhibited a single DSC melting peak different from that of the bulk α form crystals of iPP. After mixing of UHMWPE with iPP, the melting point of the UHMWPE component shifted to a lower temperature. For blends mixed at the higher‐frequency and/or larger‐amplitude vibrations, the melting point of the UHMWPE component was further gently lowered while the bulk melting point of the iPP component was slightly increased. The crystallization peaks of the two components overlapped into one single peak, and the total crystallinity became higher, together with a larger amount of the β iPP. These results showed that the two components influenced each other in blending. Hence, the resultant morphology affected the subsequent crystallization and melting behaviors. Additionally, vibration in mixing possibly affected the conformation of some polypropylene chains to favor the subsequent packing in the β form.  相似文献   

20.
The non-isothermal crystallization behaviors of isotactic polypropylene (iPP) under ambient N2 and compressed CO2 (5–50 bar) at cooling rates of 0.2–5.0 °C/min were carefully studied using high-pressure differential scanning calorimeter. The presence of compressed CO2 had strong plasticization effect on the iPP matrix and retarded the formation of critical size nuclei, which effectively postponed the crystallization peak to lower temperature region. On the basis of these findings, a new foaming strategy was utilized to fabricate iPP foams using the ordinary unmodified linear iPP with supercritical CO2 as the foaming agent. The foaming temperature range of this strategy was determined to be as wide as 40 °C and the upper and lower temperature limits were 155 and 105 °C, which were determined by the melt strength and crystallization temperature of the iPP specimen under supercritical CO2, respectively. Due to the acute depression of CO2 solubility in the iPP matrix during the foaming process, the iPP foams with the bi-modal cell structure were fabricated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号