首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene‐norbornene copolymers (ENCs) with various norbornene (NB) fractions could be synthesized by metallocene catalyst in both batch and semi‐batch processes. The batch process with long reaction time produced the ENC samples having considerable copolymer composition drift (CCD) while the semi‐batch process yielded narrow CCD. Furthermore, the effects of CCD on the resultant ENC's thermal properties were discussed. It was found that the thermal properties were dependent on both the NB fraction in obtained ENC and its CCD. The work demonstrated the importance of controlling CCD in the production of ENCs for superior materials properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Semi‐crystalline polymer nanocomposites were prepared using successive meltings and recrystallizations techniques by intercalation of small guest molecules such as 4‐chlorotoluene (PCT), 4‐bromotoluene (PBT) and 1,4‐dibromobenzene (PDBB) into poly(ethylene oxide) (PEO) crystals. Differential scanning calorimetry, Fourier transform infrared spectroscopy and wide‐angle X‐ray diffraction experimental results show that supramolecular selectivity exists for the PEO–PDBB/PBT ternary system, while there is no supramolecular selectivity for PEO–PCT/PBT ternary nanocomposites. The interactions between PEO chains and small guest molecules have an important influence on the polymer conformation, which results in the dramatic difference in intercalation behavior. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
Ethylene‐vinyl acetate copolymer (EVA)/poly(?‐caprolactone) (PCL) blend (50/50 w/w) with co‐continuous morphology was prepared via melt mixing for fabricating microporous EVA membrane materials through selective solvent extraction. Shear flow and quiescent annealing techniques were employed to control co‐continuous phase size in the EVA/PCL blend, and the time‐ and temperature‐dependent relations of phase size were then evaluated theoretically. Using these techniques, microporous EVA membrane materials with various pore sizes ranging from 2 µm to more than 200 µm were obtained. In contrast to the porous EVA membrane prepared by the traditional way of solvent casting/particulate leaching, the as‐obtained microporous membrane shows a higher level of interconnectivity and much narrower pore size distribution with uniform pore structure. © 2013 Society of Chemical Industry  相似文献   

4.
5.
6.
7.
Semi‐interpenetrating polymer networks (SIPNs) consisting of polycaprolactone (PCL) and poly(ethyleneglycol) (PEG) macromer was prepared to improve tensile property in developing biodegradable sutures. When the PEG macromer formed SIPNs with PCL, biodegradability, mechanical strength, and hydrophilicity were improved. The SIPNs fibers formed from the dry spinning process showed an increase of not only tensile strength but also water content with an increase of PEG content. These results represent an increase of the crosslinking density of the PEG network with hydrophobic property. The drawing of SIPNs fibers also further enhanced the tensile strength and the crystallinity of the SIPNs fibers. Unimelting temperature of the SIPNs fiber was observed as an indication of the polymer network without phase separation. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 835–841, 2002; DOI 10.1002/app.10351  相似文献   

8.
2,2,6,6‐Tetramethylpiperidine‐1‐oxyl (TEMPO)‐mediated living mini‐emulsion polymerization of styrene with feeding of an ascorbic acid aqueous solution throughout the polymerization was performed at 90 °C under ambient pressure. The concentrations of sodium dodecylbenzenesulfonate (SDBS) and ascorbic acid were varied to study the shell polymerization mechanism of latex particles and evolution of growing chains. Interactions between SDBS and ascorbic acid and incompatibility between ascorbic acid and styrene were evident from UV‐visible analyses. High hydrophilicity of ascorbic acid in the aqueous phase was proved using a gravimetric method. Accordingly, the formation of a surface barrier on particles was proposed because of the interactions between SDBS and ascorbic acid. For higher SDBS concentration, the surface barrier on the particles was denser. Therefore, the polymerization rate decreased with increasing SDBS concentration. However, the polymerization rate increased with increasing ascorbic acid concentration. This was due to a higher consumption rate of TEMPO by ascorbic acid. Free TEMPO tended to reside in surface zones of the particles because of the surface activity between the aqueous and oil phases. The surface zones were thus the main loci where TEMPO was consumed by ascorbic acid. The estimated number‐average molecular weight (Mn) of growing chains increased in a linear fashion with conversion. This indicated that the growing chains were produced via living mini‐emulsion polymerization. For these growing chains, the estimated Mn and final polydispersity increased with increasing SDBS concentration. This was caused by a decrease in TEMPO concentration in the surface zones of particles with increasing SDBS concentration. The ‘livingness’ of polystyrene was identified by conducting bulk polymerization of chain extension. Based on the results obtained, a shell polymerization mechanism of latex particles was proposed, and living mini‐emulsion polymerization was limited to the surface zones of particles. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Solvent dependent changes in the compatibility behavior of Polychloroprene/Ethylene–propylene–diene terpolymer blends (CR/EPDM) have been investigated using dilute solution viscometry and solvent permeability analysis. To predict the compatibility of rubber blends of different compositions in solvents of different cohesive energy densities, Huggins interaction parameter (ΔB), hydrodynamic interaction (Δη) and Sun's parameter (α) were evaluated from the analysis of the specific and reduced viscosity data of two and three‐component polymer solutions. Miscibility criteria were not satisfied for CR/EPDM blends over the entire composition range in toluene, xylene, and carbon tetrachloride (CCl4), however, a narrow miscibility domain was observed in chloroform (CHCl3) for CR/EPDM/CHCl3 system. These results were further corroborated with the analysis of heat of mixing (ΔHm) and polymer–polymer interaction parameter (χ12), for all rubber blend compositions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Rodlike samples were made from four kinds of poly(ethylene‐co‐vinyl alcohol) (EVAL) pellets with different ethylene contents. From these rodlike samples, fibers were produced using a melt‐electrospinning system equipped with a CO2‐laser melting device. The effects on the fiber diameter of the ethylene content and the moisture regain of the rodlike samples were investigated. Furthermore, the physical properties of the fibers were investigated. The following conclusions were reached: (i) EVAL fibers having an average fiber diameter smaller than 1 μm can be obtained using the system developed; (ii) the diameter of EVAL fiber is influenced by the ethylene content and the moisture regain of the starting rods; (iii) the laser heating does not greatly decrease the melting point and the molecular weight of EVAL; and (iv) preferred crystal orientation can be seen in electrospun EVAL fibers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1368–1375, 2007  相似文献   

11.
A large number of different mechanisms describing the retention of dissolved organic compounds in nanofiltration have been proposed. A recent review identified the parameters possibly involved in the separation performance and suggested a qualitative classification of dissolved compounds. Continuing this approach, a semi‐quantitative assessment of the observed rejections in nanofiltration is given in this paper, based on threshold values of key parameters such as molecular weight and molecular weight cut‐off (MWCO), molecular size, pH and pKa, hydrophobicity (logKow) and membrane charge. Experimental values and literature data were used to provide a broad basis for comparison. It was concluded that (a) all categories that contain hydrophobic components are badly defined, in particular for small components, with rejections varying from low to very high, (b) all components that contain hydrophilic components have relatively high rejections and (c) all categories that contain charged components have well‐defined, high rejections (intermediate for membranes with low surface charge). In all cases, the average rejection is higher when the component's molecular weight is larger than the MWCO of the membrane and when the molecular size is larger than the pore size of the membrane. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
A crystalline block copolymer of poly(ethylene‐block‐ethylene oxide) (PE‐b‐PEO) was successfully grafted onto a carbon black surface by direct condensation of its terminal hydroxyl groups with carboxyl groups on the surface using N,N′‐dicyclohexylcarbodiimide as a condensing agent. The electric resistance of the composite from PE‐b‐PEO (PEO content is above 50 wt %)‐grafted carbon black drastically increased to 104–106 times of the initial resistance in a vapor of dichloromethane, chloroform, tetrahydrofuran, and carbon tetrachloride, which are good solvents for PE‐b‐PEO, and returned immediately to the initial resistance when the composite was transferred in dry air. However, the change of the electric resistance of these composites was less than one‐tenth in a poor solvent vapor at the same condition. The response of the electric resistance was reproducible and stable even after exposure to a good solvent vapor and dry air with 30 cycles or exposure to the vapor over 24 h. The effect of PEO content on the vapor response was also investigated. The composite from PE‐b‐PEO‐grafted carbon black responded to the low vapor concentration with a linear relationship between the electric resistance and the concentration of the vapor in dry air. This indicates that the composite can be applied as a novel gas sensor. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2437–2447, 2000  相似文献   

13.
Wide‐angle X‐ray scattering and differential scanning calorimetry measurements have been conducted on seven random copolymers of propylene with ethylene in order to study the γ phase formation as a function of the comonomer content. The lamellar morphology of the samples was also investigated by small‐angle X‐ray scattering. The content of the γ phase was found to go through a maximum with crystallization temperature and to increase with comonomer concentration, up to a point (ethylene ≥6.5 wt%) where the latter parameter became less influential. The multiple melting endotherms behaviour of the samples was studied by DSC and temperature‐controlled diffractometric techniques. The attribution of the DSC peaks to the different isotactic polypropylene polymorphs that form in these conditions was confirmed. The results obtained permitted us to ascertain that, in the experimental conditions chosen, some further formation of crystallites takes place during the quenching to room temperature after the crystallization isotherm. In this phase, the chains organize themselves in stacks with thin lamellae, forming a distinct population with respect to those formed on isothermal crystallization. The melting of the thinner lamellae determines a convergence of the two populations into just one, still retaining an organization in stacks, that gradually disappears until complete melting of the material. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
While the field of shape memory polymers (SMPs) has developed rapidly, it is still highly challenging to obtain SMPs in the form of aerogels (SMPAs) due to the unique technique used for the fabrication of the aerogels and their high porosity. Herein, a thermally induced SMPA based on chitosan/poly(ethylene glycol) diacrylate (CS/PEGDA) semi‐interpenetrating networks is reported that are produced using an eco‐friendly strategy. The main network is responsible for the shape memory effect (SME) and can be easily tuned by varying the feed ratio of the two PEGDA precursors, which have different molecular weights. The crystalline segment in poly(ethylene glycol) diacrylate (PEGDA) with higher molecular weight acts as the molecular switch, and the PEGDA with lower molecular weight endows the network with an efficient degree of crosslinking. Meanwhile, the chitosan (CS) is interpenetrated into the main network to enhance the aerogel. The SME is realized both at the macroscale and the microscale, as is further demonstrated for three different models with various shapes.  相似文献   

15.
Volatile organic compounds (VOCs) are one of the main contributors to air pollution. To reduce anthropogenic emissions, it is necessary to improve existing techniques such as catalytic oxidation through the development of new cost‐effective catalysts. Although many studies deal with the development and testing of new materials, most are performed at laboratory scale, of which only a few study mixtures of VOCs. To assess their viability for industrial applications, further tests are required, namely, mixture tests at intermediate scale in relevant environment and extrapolated on an industrial scale. In this work, the catalytic performance of a new mixed oxide Co‐Al‐Ce was investigated towards the oxidation of the n‐butanol and toluene on a semi‐pilot scale (TRL 4). Single component and mixture experiments were performed for several concentrations at a fixed flow rate. A commercial catalyst Pd/γ‐Al2O3 was used as the benchmark to evaluate the performance of the mixed oxide. The Co‐Al‐Ce catalyst enables complete oxidation of n‐butanol at the same temperature as the reference catalyst. Moreover, it provides a better selectivity for n‐butanol, while providing an equivalent one for the oxidation of toluene. In mixtures, the presence of n‐butanol promotes the oxidation of toluene for both catalysts but more significantly for the Co‐Al‐Ce catalyst. The presence of toluene inhibits the oxidation of n‐butanol for the Co‐Al‐Ce and promotes it for high conversions of n‐butanol for the Pd/γ‐Al2O3 catalyst.  相似文献   

16.
Summary: Hydrogels of high‐molecular‐weight poly(ethylene oxide) (PEO) have been obtained in situ by applying a very simple procedure that involves UV cross‐linking of PEO in aqueous solution. The efficiency of the photoactivated cross‐linking of thin layers of PEO in aqueous solution in the presence of (4‐benzoylbenzyl) trimethylammonium chloride as a photoinitiator has been determined at room temperature and in a frozen state (?25 °C). It was found that the efficiency varies with the concentration of PEO solution, the molecular weight of PEO, and especially with the temperature. When the UV cross‐linking was performed in the frozen state, porous hydrogels with very high yield of gel fraction (above 90%) and high cross‐linking density were obtained. After drying the hydrogels, films of 50–150 μm thickness were prepared. The films swell extremely fast in water and act as asymmetric membranes.

SEM of a dried PEO hydrogel obtained by UV cross‐linking of an aqueous solution at room temperature.  相似文献   


17.
The design of an effective plant‐wide control strategy is a key challenge for the development of future continuous pharmaceutical processes. This article presents a case study for the design of a plant‐wide control structure for a system inspired by an end‐to‐end continuous pharmaceutical pilot plant. A hierarchical decomposition strategy is used to classify control objectives. A plant‐wide dynamic model of the process is used to generate parametric sensitivities, which provide a basis for the synthesis of control loops. Simulations for selected disturbances illustrate that the critical quality attributes (CQAs) of the final product can be kept close to specification in the presence of significant and persistent disturbances. Furthermore, it is illustrated how selected CQAs of the final product can be brought simultaneously to a new setpoint while maintaining the remaining CQAs at a constant value during this transition. The latter result shows flexibility to control CQAs independently of each other. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3671–3685, 2013  相似文献   

18.
Abstract. Embedding a discrete‐time autoregressive moving average (DARMA) process in a continuous‐time ARMA (CARMA) process has been discussed by many authors. These authors have considered the relationship between the autocovariance structures of continuous‐time and related discrete‐time processes. In this article, we treat the problem from a slightly different point of view. We define embedding in a more rigid way by taking account of the probability structure. We consider Gaussian processes. First we summarize the necessary and sufficient condition for a DARMA process to be able to be embedded in a CARMA process. Secondly, we show a concrete condition such that a DARMA process can be embeddable in a CARMA process. This condition is new and general. Thirdly, we show some special cases including new examples. We show how we can examine embeddability for these special cases.  相似文献   

19.
BACKGROUND: The design of experiments (DoE) is applied to the process optimization of p‐xylene (pX) separation from its isomers m‐xylene (mX) and o‐xylene (oX) mixture using silicalite‐1 membrane supported on α‐alumina. A central composite design (CCD) coupled with response surface methodology (RSM) was used to correlate the effect of two separation process variables, temperature (150–250 °C) and pX feed partial pressure (0.10–0.26 kPa) to three responses: (i) pX flux; (ii) pX/oX separation factor; and (iii) pX/mX separation factor. The significant factors affecting each response were elucidated from the analysis of variance (ANOVA). The interaction between two variables was investigated systematically based on three‐dimensional response surface plots. RESULTS: The optimization criteria were used to maximize the value of pX flux, pX/mX separation factor and pX/oX separation factor. The optimum pX flux of 5.94 × 10?6 mol m?2 s?1, pX/oX separation factor of 19 and pX/mX separation factor of 20 were obtained at a temperature of 198 °C and pX feed partial pressure of 0.22 kPa. CONCLUSIONS: The experimental results were in good agreement with the simulated values obtained from the proposed models, with an average error of ± 2.90%. In comparison with the conventional approach, DoE provides better flexibility of the process studies and a useful guideline for the membrane process operation for pX separation. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
BACKGROUND: The aim of this study was to examine the repeated batch production of bioethanol from sludge‐containing cassava mash as starchy substrate by flocculating yeast to improve volumetric bioethanol productivity and to simplify the process of a pre‐culture system. RESULTS: For the repeated batch production of bioethanol using cassava mash, the optimal recycling volume ratio was found to be 5%. The repeated batch fermentation was completed within 36 h, while the batch fermentation was completed after 42 h. Volumetric productivity, final ethanol concentration, and ethanol yield were attained to 2.15 g L?1 h?1, 83.64 g L?1, and 85.15%, respectively. Although cell accumulation in the repeated batch process is difficult due to the cassava mash, the repeated batch process using Saccharomyces cerevisiae CHFY0321 could exhibited 10‐fold higher initial viable cell number (1.7 × 107 CFU mL?1) than that of the batch process. CONCLUSION: The liquefied cassava powder was directly used for the repeated batch process without removal of sludge. Repeated batch bioethanol production by simultaneous saccharification and fermentation using self‐flocculating yeast could reduce process costs and accelerate commercial applications. This result was probably due in part to the effect of the initial viable cell density. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号