首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation, characterization of CaO and its application in the catalytic ozonation of cinnamaldehyde to benzaldehyde were studied. The calcination temperature greatly affected the physicochemical properties of CaO, and the CaO calcined at 900°C exhibited the optimal ozone utilization efficiency. When using 0.20 g CaO calcined at 900°C, 750 mL·min?1 oxygen flow rate for generating O3, and reacted at 0°C for 210 min, the cinnamaldehyde conversion reached 97.77%, as well as the benzaldehyde yield was 59.51%. And the cinnamaldehyde conversion in a catalytic ozonation on CaO catalyst maintained above 90% for four used cycles, which exhibited reasonable catalyst stability. The electron donating process of surface O2‐ on the catalyst is the key to improve the benzaldehyde yield, and based on the intrinsic kinetic study, the Eley‐Rideal kinetic model with cinnamaldehyde being adsorbed was the appropriate model for the catalytic ozonation of cinnamaldehyde on CaO. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4403–4417, 2017  相似文献   

2.
In this study, new heterogeneous cobalt (Co) catalysts supported on activated carbon (Co/AC) were developed using a wetness impregnation process. The effect of preparation conditions on catalyst characteristics was examined. This work focused on two key parameters: the impregnation rate and the calcination atmosphere (temperature and time). Different catalysts were prepared by varying the Co loading on AC. Various catalysts were characterized by means of nitrogen sorptiometry at 77K, Boehm and pHpzc analysis. It was found that the catalyst properties and the functional surface groups were affected by the operating conditions. The best surface area was 997.5 m2/g obtained when the activated carbon was impregnated with 5% Co loading and calcined at 350°C for 2 h. The effects of parameters, such as cobalt loading, pH, catalyst dose, and ozone dose, were explored on oxalic acid removal (OA). Results show that the use of Co/AC for heterogeneous catalytic ozonation enhanced the degradation efficiency of oxalic acid (OA) significantly compared with simple ozonation and O3/AC. The main results indicate that the optimum catalytic activity was observed when 5% (wt/wt) of Co was supported on AC reaching a catalytic ozonation efficiency of 95%. The results of total organic carbon removal of 91% were achieved at optimum conditions.  相似文献   

3.
The ozonation of two pharmaceutical compounds: the drug diclofenac (DCF) and the synthetic hormone 17α-ethynylstradiol (EST), has been studied in laboratory prepared water and domestic wastewater in the presence of perovskite catalysts. In ultrapure water, catalysts do not lead to any improvement on the ozonation rates of DCF and EST which supports the fact that both compounds are removed by direct ozonation. TOC removal, on the other hand, is significantly increased in the presence of perovskite catalysts, especially when copper perovskite is used, with TOC removals in the order of 90% after 120 minutes of reaction. In domestic wastewater the results are similar regarding the mechanism of initial pharmaceutical compounds removal, which are due to direct reactions with ozone that, in this case, develop during longer reaction times likely due to the presence of other contaminants. Then, regarding TOC removal in domestic wastewater, negligible differences between non-catalytic and catalytic ozonation are observed during the first approximately 25 minutes of reaction. For higher reaction time, TOC removal is improved only in the case copper perovskite catalyst is used although percentages of TOC removal are comparatively lower than those reached in ultrapure water (they hardly reach 50% TOC removal). Finally, a kinetic study has been carried out and apparent rate constants of the heterogeneous reaction between ozone and TOC on the catalyst surface have been determined.  相似文献   

4.
童琴  董亚梅  昆峰  何丹农 《化工进展》2019,38(z1):226-231
非均相催化臭氧氧化技术是一种高效的水污染控制技术。负载型稀土臭氧氧化催化剂因稀土元素独特的电子构型,展现出优异的催化性能,不仅具有良好的稳定性和较长的使用寿命,还可有效解决催化剂流失及出水金属离子超标问题,被认为是最有前景的非均相臭氧氧化催化剂。本文着重从负载型稀土臭氧氧化催化剂的制备、催化反应机理以及单稀土、稀土-过渡金属、双稀土-过渡金属氧化物负载型臭氧氧化催化剂在近几年的污水处理领域中的应用进展进行概述与总结。多稀土复合型非均相臭氧氧化催化剂的开发,以及对催化氧化过程的作用机理的深入研究,是未来非均相催化臭氧氧化技术在水处理中的重点研究方向。  相似文献   

5.
To assess the mineralization level achieved, aqueous solutions of phenol have been treated with ozone in the presence of different solid catalysts. Activated carbon was the principal catalyst investigated, although some additional experiments were carried out by utilizing metal oxide‐based catalysts (ie Ti, Co and Fe) supported onto alumina. Usage of Co/Al2O3 led to the highest values of phenol byproduct mineralization, nevertheless some metal leaching was experienced in the process. The operating variables studied when using activated carbon as the catalyst were ozone gas concentration, amount of catalyst added and temperature. Regardless of the catalyst type used, two different ozonation kinetic regimes were observed: (I) an initial period, corresponding to the presence of phenol in solution, characterized by small amounts of dissolved ozone and no improvement of the mineralization degree if comparing catalytic and non‐catalytic runs; (II) a second period, free of phenol, in which dissolved ozone accumulated in water and the beneficial effects of catalysts on mineralization were noticed. Experimental data also demonstrated the improvement in oxalic acid elimination in the presence of heterogeneous catalysts. Finally, consumption of ozone per mass of carbon removed, reaction factors and Hatta numbers were also calculated. Copyright © 2003 Society of Chemical Industry  相似文献   

6.
The efficiency of a heterogeneous potassium fluoride (KF)/clay catalyst in continuous ester production from residual frying oil using pressurized ethanol is evaluated. Reactions without catalysts are conducted to determine the effect of the catalyst on ester yield. To verify the performance of the catalyst, the reactions are conducted for 3 h with determination of the ester yield every 30 min and characterization of the catalyst after each reaction. The influence of the temperature, catalyst mass used in the catalytic bed, and the residence time are evaluated. KF/clay is found to be efficient in ester synthesis and provides better results compared with non‐catalytic reactions and the formation of esters is favored on increasing the temperature. The ester yields remain stable over time at 275 and 300 °C but at 225 and 250 °C the yields decrease by 48.42% and 38.40%, respectively. This may be due to the lower diffusion coefficient at these temperatures, implying that the reaction occurs preferentially at the catalyst surface. There is an increase in yield with an increase in the catalyst mass up to 2 g. The catalyst maintains its morphological characteristics after the reaction and the average mass loss in each reaction is <8%. Practical Applications: Transesterification at high temperature under pressurized conditions has great potential in biodiesel production, due to the efficiency in obtaining esters in short reaction times. In addition, the use of inexpensive and easily obtained clay‐based catalysts contributes to higher yields and allows milder operating conditions. These factors make it possible to obtain biodiesel using a low‐cost raw material (residual frying oil), under pressurized conditions, which will be of interest worldwide due to the various benefits linked to its use.  相似文献   

7.
The aqueous solution of a model reactive dye, C.I. Reactive Blue 5, was ozonated in the presence of a heterogeneous catalyst, CuS. It was found that CuS was very effective for catalyzing the decolorization so that both treatment time and ozone consumption were significantly reduced. For 1 g/L of the reactive dye, the stoichiometric ratios of ozone to dye in catalyzed and noncatalyzed ozonations were 2.7 and 10.6 (moles of ozone consumed)/(moles of dye oxidized), respectively, and the optimum catalyst load was 0.4 g/L. Although the noncatalytic ozonation was pseudo-first-order and the apparent pseudo-first-order rate constant declined with initial dye concentration logarithmically, in contrast, the experimental results showed that the catalytic ozonation was pseudo-second-order and the apparent pseudo-second-order rate constant decreased with initial dye concentration semilogarithmically. It was observed that the efficacy of ozone decolorization was higher at low pH and a scavenger test revealed that the amount of free radicals were negligible during ozonation. The experimental data further indicated that increase in temperature would increase the rate of the catalytic ozonation, however, the increment in the rate was not significant beyond 20°C.  相似文献   

8.
A comparative study is made of the benzene-ozone reaction in the gaseous and aqueous phase reactors at atmospheric pressure and 25°C. The vapor phase ozonation of benzene is first order in ozone and independent of benzene concentration. In distilled water (pH ranging from 5.2 to 5.4), the reaction is one-half order with respect to both concentrations of dissolved benzene and ozone. The overall rate constants are 0.0011 and 2.67 s?1, respectively, in the vapor and liquid phase reactions. Results of this study suggest that it is technically feasible to remove benzene from a gas stream by the ozonation process, although the reaction rate is slow.  相似文献   

9.
Silver modified (5 and 2 wt% loading) mesoporous molecular sieves (H-MCM-41, with Si/Al ratio 20, 40 and 50) and silica were synthesized by incipient wetness impregnation and ion-exchange methods. The obtained catalysts were characterized by different techniques (ICP, XRD, XRF, SEM, FTIR and nitrogen physisorption) and they were tested in heterogeneous catalytic decomposition of ozone and oxidation reactions involving ozone at ambient temperature. All the mesoporous catalysts have very high catalytic activities towards ozone decomposition at room temperature and they do not reveal any deactivation with the time on stream. The activities of the catalysts are enhanced upon increasing the amount of supported silver, decreasing the support acidity and modifying the catalyst with some additional metal having basic properties, such as Ce. The most active catalyst in the reaction of ozone decomposition—5Ag-H-MCM-41-50, shows also high activity at ambient temperature in the oxidation of CO and iso-propanol with ozone.  相似文献   

10.
Activated carbon (AC) has been used to catalyze the ozonation of pyruvic acid in water. Pyruvic acid conversions were found to be 9 and 37% after 90 min of single ozonation and single adsorption with 40 gL?1 AC, respectively, while 82% was reached at the same conditions during the AC catalytic ozonation. Also, for similar conditions, mineralization reached values of 67% in the AC catalytic ozonation against hardly 5% in the non-catalytic experiment. The process likely develops through both adsorption of ozone and pyruvic acid on the AC surface and generation of hydroxyl radicals that eventually is the responsible oxidizing species. Rate constants for both non-catalytic ozonation and AC-Ozone catalytic surface reaction, at 20°C and pH 7.5, were found to be 0.025 min?1 and 87.9 Lg?1s?1, respectively. For AC concentrations higher than 2.5 gL?1 gas-liquid mass transfer of ozone constituted the limiting step. At lower concentrations, internal diffusion plus surface reaction controlled the process rate.  相似文献   

11.
水污染是当前工业发展中亟待解决的问题之一,催化臭氧氧化降解有机污染物工艺具有绿色、高效和工艺简单的优点而被广泛应用,而其中的关键在于催化剂的选用。本研究对均相催化臭氧氧化和非均相催化臭氧氧化过程的机理进行了分析和总结,着重讨论了非均相催化臭氧氧化过程常采用的贵金属催化剂、过渡金属催化剂、碱土金属催化剂和非金属催化剂对臭氧氧化降解有机污染物的促进作用,对提高这些催化剂催化活性的方法进行了综述,总结了pH值、臭氧浓度、催化剂剂量和有机污染物浓度对催化臭氧氧化降解有机物过程的影响。指出目前催化臭氧氧化降解有机污染物过程面临的主要问题是活性组分的流失导致催化剂催化活性下降。在今后的研究中,开发和制备新型、高效、绿色、稳定的催化剂以及探究最佳工艺条件仍是研究的重点。可以通过提高催化剂的吸附能力以改善臭氧在水溶液中的传质,促进臭氧分子的分解,还可以通过不同活性组分的协同偶联有效抑制活性组分的流失,提高催化剂催化活性的同时提高催化剂的稳定性,以达到高效降解有机化合物的目的。  相似文献   

12.
臭氧催化氧化机理及其技术研究进展   总被引:6,自引:0,他引:6       下载免费PDF全文
朱秋实  陈进富  姜海洋  郭绍辉  刘洪达 《化工进展》2014,33(4):1010-1014,1034
臭氧催化氧化技术可以提高污水中总有机碳(TOC)的去除效率和臭氧的利用率,近年来得到了广泛的研究。但由于催化反应过程复杂、影响因素多,导致其反应机理一直存在较大的争议。本文回顾了近年来国内外对臭氧催化氧化技术的研究结果,对均相、非均相臭氧催化氧化机理以及非均相催化剂的组成、活性影响因素进行了总结,并对非均相臭氧催化氧化技术用于降解模型化合物和处理典型工业污水的研究进展进行了介绍。文章最后指出催化剂的结构和表面化学性质与催化机理、有机物的降解途径之间的相互关系还需要更深入的研究。  相似文献   

13.
A comparative study has been made on the efficiency of leaching, using different concentrations of oxidized oxalic acid, and thermally treating techniques to reactivate a Ni‐Mo‐spent hydrotreating catalyst. The reactivation of the treated catalysts was performed in a pulse microcatalytic reactor under atmospheric pressure of hydrogen and reaction temperatures ranging from 250 °C to 450 °C using cyclohexene as model hydrocarbon. The studies revealed that a decoking spent catalyst after leaching using a low concentration (2 %) enhanced its physical characteristics (surface area and average pore diameter) and catalytic activity towards maximum cyclohexene hydrogenation and hydroisomerization reactions at 300 °C and 350 °C, respectively.  相似文献   

14.
The investigation of heterogeneous catalytic ozonation of sulfosalicylic acid (SSal) in aqueous solution is reported in this paper. It was found that catalytic ozonation in the presence of V-O supported on silica gel had a more positive effect on the removal rate (62% in 30 min) of total organic carbon (TOC) than that of ozonation alone (20% in 30 min), and the catalyst supported on TiO2 had similar results. The experimental results also showed that the ozone dosage should be sufficient for achieving the catalytic effect. Efficient removal of TOC in catalytic ozonation was probably attributed to producing more powerful oxidants than molecular ozone.  相似文献   

15.
Sulfamethoxazole (SMX), one pharmaceutical compound, has been treated in aqueous solutions with catalysts (copper and cobalt type perovskites and cobalt–alumina) and promoters (activated carbons). Hydrogen peroxide and saturated carboxylic acids were identified as intermediates. The effects of adsorption and pH have been investigated. Removal of the starting SMX accomplished with ozone alone is a fast process but catalytic or promoted ozonation is needed to significantly reduce the resulting organic carbon. SMX is, thus, mainly removed through direct ozone reaction while hydroxyl radical oxidation is the mechanism of removal the remaining TOC. The kinetics of the process has also been investigated. Perovskite catalytic ozonation resulted to be a chemical control process and apparent rate constants for homogeneous and heterogeneous ozonation were determined. For activated carbon ozonation, external diffusion of ozone to solid particles controlled the process rate.  相似文献   

16.
Soybean oil was hydrogenated with a carbon‐supported ruthenium catalyst (Ru/C) at 165 °C, 2 bar H2 and 500 rpm stirring speed. Reaction rates, trans isomer formation, selectivity ratios and melting behaviors of the samples were monitored. No catalytic activity was found for the application of 10 ppm of the catalyst, and significant catalytic activity appeared at >50 ppm of active catalyst. The catalyst concentration had an effect on the reaction rate of hydrogenation, but the weight‐normalized reaction rate constant (kc) was almost independent of the catalyst concentration at lower iodine values. Ru/C generated considerable amounts of trans fatty acids (TFA), including high amounts of trans 18:2, and also stearic acid, due to its very non‐selective nature. The selectivity ratios were found to be low and varied between 1.12 and 4.32 during the reactions. On the other hand, because of the low selectivity, higher slip melting points and solid fat contents at high temperatures were obtained than those for nickel and palladium catalysts. Another different characteristic of this catalyst was the formation (max 1.67%) of conjugated linoleic acid (CLA) during hydrogenation. Besides, CLA formation in the early stages of the reactions did not change very much with the lower iodine values.  相似文献   

17.
Diels‐Alder reactions of conjugated linoleic acid ethyl ester (1) with different quinones and with a variety of α/βunsaturated aldehydes and ketones are described in this paper. Using Sc(OTf)3 or Cu(OTf)2 as catalysts the reactions can be carried out at 25—40 °C with good yields. For the first time in oleochemistry it is possible to prepare Diels‐Alder cycloadditions with catalyst concentrations of 10 mol‐% instead of stoichiometric amounts of Lewis acids. Furthermore, the reaction time was partly shortened drastically. The catalyst Sc(OTf)3 can be removed by a simple extraction of the organic layer with water. After evaporation of the aqueous phase to dryness the catalyst can be reused without loss of yield.  相似文献   

18.
In this study, utilization of waste marble slurry (MS) as an eco‐friendly and low‐cost heterogeneous catalyst is introduced for biodiesel production from soybean oil. Catalytic transesterification reaction was done to convert biodiesel from soybean oil using Marble slurry (MS) derived calcined marble slurry (CMS), and hydroxyapatite (HAP) as a heterogeneous catalyst. Marble slurry derived catalysts were characterized by XRD, FTIR, SEM, and TGA with elemental analysis. Hammett indicator method and ion exchange method were also used to verify catalytic activities of the catalysts. The HAP provided the better biodiesel yield of 94 ± 1 % with the highest basicity (13.30 mmol/g) and basic strength than CMS under optimized reaction conditions: reaction temperature 65 °C; reaction time 3 h; methanol/oil molar ratio 9:1; and catalyst concentration 6 wt%. Reusability tests provide confirmation about the stability of the catalyst and slight fluctuations in catalytic activity and biodiesel yield when used up to five runs.
  相似文献   

19.
BACKGROUND: Chloronitrobenzenes (ClNBs) are a family of toxic and bio‐resistant organic compounds. Ozone treatment is specifically suitable for partial or complete oxidation of non‐biodegradable components. However, few studies on the decomposition of ClNBs by ozone are available, and kinetics and mechanisms of ClNBs ozonation have not been thoroughly investigated. The kinetics and mechanism of ozonation degradation of ClNBs in aqueous solution were investigated, and the contribution of both molecular ozone and hydroxyl radicals was also evaluated. RESULTS: The results demonstrated that the decomposition of ClNBs was a pseudo‐first‐order reaction with respect to the pollutant concentration and the overall rate constant increased with an increase in pH. It declined, however, with an increase in pollutant and radical scavenger concentration. Furthermore, TOC removal rate was significantly lower than that of ClNBs, but the same order o‐ClNB < m‐ClNB < p‐ClNB was followed. Ozonation could not reduce TOC significantly, p‐chlorophenol, p‐nitrophenol, 2‐chloro‐5‐nitrophenol and 5‐chloro‐2‐nitrophenol were detected as primary degradation intermediates in ozonation of p‐ClNB. Rate constants of the direct reaction between ozone and ClNBs at 25 °C had been found to be lower than 1 M?1S?1. More than 95% of ClNBs removal was due to hydroxyl radical oxidation at pH ≥ 7. CONCLUSION: Advanced oxidation processes may be the preferred choice for the elimination of ClNBs from the environment. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
Tailor made N‐heterocyclic carbene (NHC) catalyst precursors namely (+) and (?) 1‐methyl‐3‐menthoxymethyl imidazolium chloride have been synthesized in high yield with a literature modified procedure. A reaction of catalyst precursor with potassium tert butoxide in situ generates the NHC catalyst. The zwitterionic ring opening polymerization of lactide (LA) mediated by a catalytic system composed of NHC catalyst at 25°C under argon atmosphere led to a cyclic poly(lactide) of a high molecular weight with a narrow molecular weight distribution. The cyclic poly(lactide) was characterized by NMR spectroscopy, Gel Permeation Chromatography (GPC) and Matrix‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS). The NHC catalysts are active for lactide polymerization in the presence of air and elevated temperatures at 55°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号