首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: In this study, visible‐light‐derived photocatalytic activity of metal‐doped titanium dioxide nanosphere (TS) stacking layers, prepared by chemical vapor deposition (CVD), was investigated. The as‐grown TS spheres, having an average diameter of 100–300 nm, formed a layer‐by‐layer stacking layer on a glass substrate. The crystalline structures of the TS samples were of anatase‐type. RESULTS: Ultraviolet (UV) absorption confirmed that metallic doping (i.e. Co and Ni) shifted the light absorption of the spheres to the visible‐light region. With increasing dopant density, the optical band gap of the nanospheres became narrower, e.g. the smallest band gap of Co‐doped TS was 2.61 eV. Both Ni‐ and Co‐doped TS catalysts showed a photocatalytic capability in decomposing organic dyes under visible irradiation. In comparison, Co‐doped TiO2 catalyst not only displays the adsorption capacity, but also the photocatalytic activity higher than the N‐doped TiO2 catalyst. CONCLUSION: This result can be attributed to the fact that the narrower band gap easily generates electron–hole pairs over the TS catalysts under visible irradiation, thus, leading to the higher photocatalytic activity. Accordingly, this study shed some light on the one‐step efficient CVD approach to synthesize metal‐doped TS catalysts for decomposing dye compounds in aqueous solution. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
TiO2 nanopowders doped by Cu were prepared by the sol–gel method. The effects of Cu doping on the structural, optical, and photo-catalytic properties of titania nanopowders have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis absorption spectroscopy. XRD results suggest that adding impurities has a significant effect on anatase phase stability, crystallinity, and particle size of TiO2. Titania rutile phase formation in the system (Ti–Cu) was promoted by Cu2+ doped TiO2. The photo-catalytic activity was evaluated by photo-catalytic degradation kinetics of aqueous methylene orange (MO) under visible radiation. The results show that the photo-catalytic activity of the 5 %Cu doped TiO2 nanopowders has a larger degradation efficiency than pure TiO 2 under visible light. Also, the minimum band gap was estimated to be ~ 1.9–2 eV from UV–Vis spectra.  相似文献   

3.
《Ceramics International》2016,42(12):13900-13908
The band structure, density of states, electron density difference, and optical properties of Cr and C co-doped anatase TiO2 are studied using first principles calculations under the framework of the density functional theory. We mainly discuss three possible Cr–C adjacent co-doped configurations, where one Cr atom and one C atom substitute for one Ti atom and O atom respectively. The band structures show that the sub-bands induced mainly by C-2p state and Cr-3d state narrow the effective band gap down to ~0.86 eV and ~1.19 eV for different doped configurations. Doped Cr and C ion have different degree polarization, which will promote the electrons and holes separating. The calculated optical absorption spectrum exhibits shifts of the absorption edges of the three Cr–C co-doped TiO2 samples towards the visible light region.  相似文献   

4.
Transition metal (Fe, V and W)-doped TiO2 was synthesized via the solvothermal technique and immobilized onto fiberglass cloth (FGC) for uses in photocatalytic decomposition of gaseous volatile organic compounds—benzene, toluene, ethylbenzene and xylene (BTEX)—under visible light. Results were compared to that of the standard commercial pure TiO2 (P25) coated FGC. All doped samples exhibit higher visible light catalytic activity than the pure TiO2. The V-doped sample shows the highest photocatalytic activity followed by the W- and Fe-doped samples. The UV-Vis diffuse reflectance spectra reveal that the V-doped sample has the highest visible light absorption followed by the W- and Fe-doped samples. The X-ray diffraction (XRD) patterns indicate that all doped samples contain both anatase and rutile phases with the majority (>80%) being anatase. No new peaks associated with dopant oxides can be observed, suggesting that the transition metal (TM) dopants are well mixed into the TiO2 lattice, or are below the detection limit of the XRD. The X-ray absorption near-edge structure spectra of the Ti K-edge transition indicate that most Ti ions are in a tetravalent state with octahedral coordination, but with increased lattice distortion from Fe- to V- and W-doped samples. Our results show that the TM-doped TiO2 were successfully synthesized and immobilized onto flexible fiberglass cloth suitable for treatment of gaseous organic pollutants under visible light.  相似文献   

5.
Carbon‐doped TiO2 nanomaterials have been successfully synthesized via an effective two‐step procedure involving hydrothermal method and followed by a low‐temperature calcination treatment process, through which a controllable amount of carbonate‐like species could be incorporated into TiO2. First‐principles calculations suggest the TiO2 doped with carbon in form of carbonate‐like species can effectively extend the adsorption of the material from ultraviolet region to visible light. And it is experimentally found that carbon‐doped TiO2 nanomaterials exhibit much higher photocatalytic activity than reference P25 and TiO2?xNx catalysts toward the liquid‐phase degradation of organic pollutants under visible light (420 nm < λ < 800 nm) irradiation. The presence of synergic effect between carbonate‐like doping and anatase TiO2 is believed to play an essential role in affecting the photocatalytic reactivity, and the response to the visible light is ascribed to the narrowed band gap energy controlled by carbon doping. Moreover, the roles of active species in the photocatalytic process are compared using different types of active species scavengers. Meanwhile, the degradation mechanism of the photocatalysis is proposed. It is hoped that our work could provide valuable information on the design of carbonate‐like doped semiconductor with more excellent properties and set the foundation for the further industrial application.  相似文献   

6.
We have established a novel route for the synthesis of N-doped TiO2 by adopting flame aerosol (FSP) technique and investigated the effect of water content on the physico-chemical properties of the as-synthesized nanoparticles. The key characteristics of the developed method are to modify the precursor solution in order to incorporate nitrogen atoms into the TiO2 lattice without altering the FSP set-up. The reduction of the flame enthalpy resulting in N-incorporation into the TiO2 and the N-doping can be greatly enhanced further by the addition of secondary N-source (urea). Our XRD results reveal a shift of the (101) plane anatase diffraction peak to lower angles in our N-doped TiO2 compared to undoped TiO2, which suggest the distortion and strain in the crystal lattice prompted by the incorporation of the nitrogen atoms. The growth or expansion of crystal lattice can be attributed to the larger atomic radius of respective nitrogen atoms (r?=?1.7 Å) compared to oxygen (r?=?1.40 Å). Our XPS and EDX spectroscopy results elucidate that the nitrogen was effectively doped into the crystal lattice of TiO2 in our as-synthesized N-TiO2 catalysts predominantly in the form of interstitial nitrogen (Ti?O?N). The nitrogen atoms incorporation into the crystal lattice of titania modifies the electronic band structure of TiO2, resulting in a new mid-gap energy state N 2p band formed above O 2p valence band. This occurrence narrows the band gap of TiO2 (from 3.12 to ~2.51?eV) in our N-doped TiO2 and shifts the optical absorption to the visible region.

Copyright © 2018 American Association for Aerosol Research  相似文献   

7.
TiO2 nanopowders doped by Ni were prepared by sol–gel method. The effects of Ni ion (transition metal ion) doping on the physical structural and optical properties of TiO2 have been investigated by X-ray diffraction (XRD), scanning electron microscopy and UV–Vis absorption spectroscopy. XRD results suggest that adding impurities has a significant effect on anatase phase stability, crystallinity, and particle size of TiO2. The phase transformation from anatase to rutile was inhibited by Ni ion doped TiO2 at temperatures 675 °C. The lowest band gap value (2.83 eV) was obtained for TiO2-4%Ni sample calcined at 675 °C.  相似文献   

8.
TiO2 thin films doped with ≤7 mol% Mn (metal basis) were deposited on F-doped SnO2-coated (FTO) glass substrates by spin coating. The structural, morphological, and optical properties of the films were investigated by glancing angle X-ray diffraction (GAXRD), laser Raman microspectroscopy, field emission scanning electron microscopy (FESEM), and ultraviolet–visible spectroscopy (UV–VIS). Mn doping of TiO2 (anatase) extended the optical absorption edge to longer wavelengths (lower photon energies) significantly lowering the band gap from 3.32 eV (undoped) to 2.90 (7 mol% Mn). The absorption edges of all films were sharp and the transparencies in the visible region were in the range 60–75%. All of the films were homogeneous, fully dense, and essentially crack-free.  相似文献   

9.
The photoelectrochemical properties of polycrystalline TiO2 prepared at high temperature and doped polycrystalline TiO2 with noble metals have been investigated. The polycrystalline TiO2 prepared at high temperature give a cathodic photocurrent as well as a visible light response. These phenomena can be explained by a model based on the d-band formed by the interstitial Ti ion in TiO2 lattice. The doped polycrystalline TiO2 with noble metals (Rh, Ru, Pt, Au) prepared at low temperature also show a cathodic photocurrent and a visible light response. These are based on the impurity band formed by the doping metals. It is judged that the impurity band is near the π* conduction band for the doped TiO2 with Rh, Ru and Pt, but is near the π valence band for the Au doped TiO2 in energy position. It is found that there exist overlap potentials of the anodic and cathodic photocurrents at the doped TiO2 with noble metals. This will provide evidence on the mechanism of the enhancement of the photocatalysis on TiO2 owing to the doping of noble metals.  相似文献   

10.
Silver and zirconium co‐doped and mono‐doped titania nanocomposites were synthesized and deposited onto polyacrylonitrile fibers via sol–gel dip‐coating method. The resulted coated‐fibers were characterized by X‐ray diffraction (XRD), scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, diffuse reflectance spectroscopy, thermogravimetric analysis, and BET surface area measurement. Photocatalytic activity of the TiO2‐coated and TiO2‐doped coated fibers were determined by photomineralization of methylene blue and Eosin Y under UV–vis light. The progress of photodegradation of dyes was monitored by diffuse reflectance spectroscopy. The XRD results of samples indicate that the TiO2, Ag‐TiO2, Zr‐TiO2, and Ag‐Zr‐TiO2 consist of anatase phase. All samples demonstrated photo‐assisted self‐cleaning properties when exposed to UV–vis irradiation. Evaluated by decomposing dyes, photocatalytic activity of Ag–Zr co‐doped TiO2 coated fiber was obviously higher than that of pure TiO2 and mono‐doped TiO2. Our results showed that the synergistic action between the silver and zirconium species in the Ag‐Zr TiO2 nanocomposite is due to both the structural and electronic properties of the photoactive anatase phase. These results clearly indicate that modification of semiconductor photocatalyst by co‐doping process is an effective method for increasing the photocatalytic activity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
The electronic structures, formation energies, and band edge positions of anatase TiO2 doped with transition metals have been analyzed by ab initio band calculations based on the density functional theory with the planewave ultrasoft pseudopotential method. The model structures of transition metal-doped TiO2 were constructed by using the 24-atom 2 × 1 × 1 supercell of anatase TiO2 with one Ti atom replaced by a transition metal atom. The results indicate that most transition metal doping can narrow the band gap of TiO2, lead to the improvement in the photoreactivity of TiO2, and simultaneously maintain strong redox potential. Under O-rich growth condition, the preparation of Co-, Cr-, and Ni-doped TiO2 becomes relatively easy in the experiment due to their negative impurity formation energies, which suggests that these doping systems are easy to obtain and with good stability. The theoretical calculations could provide meaningful guides to develop more active photocatalysts with visible light response.  相似文献   

12.
BACKGROUND: Mercury electrodeless discharge lamps (Hg‐EDLs) were used to generate UV radiation when exposed to a microwave field. EDLs were coated with doped TiO2 in the form of thin films containing transition metal ions Mn+ (M = Fe, Co, Ni, V, Cr, Mn, Zr, Ag). Photocatalytic degradation of mono‐chloroacetic acid (MCAA) to HCl, CO2, and H2O, and decomposition of Rhodamine B on the thin films were investigated in detail. RESULTS: Polycrystalline thin doped TiO2 films were prepared by dip‐coating of EDL via a sol–gel method using titanium n‐butoxide, acetylacetone, and a transition metal acetylacetonate. The films were characterized by Raman spectroscopy, UV/Vis absorption spectroscopy, X‐ray photoelectron spectroscopy (XPS), electron microprobe analysis and by atomic force microscopy (AFM). The photocatalytic activity of doped TiO2 films was monitored in the decomposition of Rhodamine B in water. Compared with the pure TiO2 film, the UV/Vis spectra of V, Zr and Ag‐doped TiO2 showed significant absorption in the visible region, and hence the photocatalytic degradation of MCAA had increased. The best apparent degradation rate constant (0.0125 min?1), which was higher than that on the pure TiO2 film by a factor of 1.7, was obtained with the Ag(3%)/TiO2 photocatalyst. The effect of doping level of vanadium acetylacetonate on the photocatalytic efficiency of the V‐doped TiO2 was determined. CONCLUSIONS: Transition metal ion‐doped TiO2 thin films showed significant absorption in the visible region. The metal doped TiO2 photocatalyst (with an appropriate amount of V, Zr and Ag) on the Hg‐EDLs increased the degradation efficiency of MCAA in a microwave field. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Nitrogen doped yellowish anatase phase of titania support (TiO2?x N x ) was prepared by hydrolysis of titanium (IV) butoxide with 15% NH4OH followed by filtration, drying and calcination at 450 °C for 3 h. For comparison, TiO2 was prepared by hydrolysing titanium (IV) butylate with distilled water. Deposition precipitation method was used for Au loading on TiO2?x N x and TiO2. These were characterised by XRD, Laser Raman spectroscopy, transmission electron microscopy, BET surface area analyser, and UV–visible spectrophotometry. UV–visible (diffused reflectance) spectrum of TiO2?x N x support shows a distinct absorption band around 450 nm wavelength indicating for N doping. Whereas, TiO2 does not show any absorption band in the visible region. The activity of gold loaded on these supports was tested for CO oxidation reaction. Effect of different pre-treatment conditions and effect of moisture on these catalysts were studied, and the results obtained were interpreted on the basis of nitrogen doping, optoelectronic properties, ability of oxygen uptake of the support and particle size of gold.  相似文献   

14.
Alkaline‐earth metal Ca and N codoped TiO2 sheets with exposed {001} facets were obtained through a one‐step hydrothermal process. The codoped TiO2 appears as microsheets with length of 1–2 μm and thickness of 100–200 nm. The X‐ray diffractometer and X‐ray photoelectron spectroscopy results confirm that Ca and N codoped TiO2 has higher crystallinity than N‐doped TiO2, as well Ca, N atoms were successfully codoped into TiO2 as interstitial Ca and interstitial N or an O–Ti–N structure, respectively. Compared with N monodoped, further alkaline‐earth Ca codoped has little influence on the energy bands of TiO2 except slightly elevating the conduction band edge at a value of 0.02 eV. The hydroxyl radicals (?OH) producing and photocatalytic experiment shows that Ca and N codoped can effectively decrease the generation of recombination centers, and enhance separation efficiency of photo‐induced electrons and holes as well as the photocatalytic activity of TiO2. The codoped photocatalyst has the highest photocatalytic activity when Ca doped ratio reach 0.48%. Excess Ca doped will weaken the crystallization of anatase TiO2, form charge center, produce new recombination centers and finally reduce the photocatalytic activity of TiO2.  相似文献   

15.
A photocatalyst, TiO2?xNy/AC (activated carbon (AC) supported N‐doped TiO2), highly active in both the Vis and UV range, was prepared by calcination of the TiO2 precursor prepared by acid‐catalyzed hydrolysis in an ammonia atmosphere. The powders were characterized by diffuse reflectance spectroscopy, scanning electron microscopy, X‐ray diffraction, N2 adsorption, Fourier transform infrared spectroscopy and phenol degradation. The doped N in the TiO2 crystal lattice creates an electron‐occupied intra‐band gap allowing electron‐hole pair generation under Vis irradiation (500–560 nm). The TiO2?xNy/AC exhibited high levels of activity and the same activity trends for phenol degradation under both Vis and UV irradiation: TiO2?xNy/AC calcined at 500 °C for 4 h exhibited the highest activity. The band‐gap level newly formed by doped N can act as a center for the photo‐generated holes and is beneficial for the UV activity enhancement. The performance of the prepared TiO2?xNy/AC photocatalyst revealed its practical potential in the field of solar photocatalytic degradation of aqueous contaminants. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
Hierarchical porous carbon fabricated from biomass provides an effective support for catalysts. Nitrogen doped TiO2 particles (50?nm in size) synthesized from titanium tetraethoxide were loaded uniformly on the porous carbons carbonized from Zizania latifolia leaves by a sol?Cgel method. X-Ray diffraction and Auger Electronic Spectrometer analysis indicated that nitrogen atoms were doped into anatase TiO2 lattices. The bandgap of the nitrogen doped TiO2 derived from the light absorption spectrum was about 3.05?eV. The nitrogen doped TiO2 on the hierarchical porous carbon hybrid photocatalysts showed a high degradation rate of 2-propanol in water with visible light irradiation.  相似文献   

17.
S–N co-doped anatase nanosized TiO2 photocatalyst was successfully prepared by simple sol–gel method. The samples were characterized by XRD, XPS, UV–Vis. From the results of UV–Vis, a red shift of the absorption edge was brought out owing to the S and N codoping. XPS and UV–Vis studies revealed that N and S were in situ codoped in the lattice of TiO2 and the absorbance in visible light region decreased with the calcination temperature increased. The photocatalytic activity was evaluated by the photocatalytic oxidation of penicillin solution under visible light irradiation. The results show that visible-light induced photocatalytic activities of the as-prepared TiO2 powders were improved by S–N copoing. The high activity of S–N co-doped TiO2 can be related to the results of the synergetic effects of strong absorption in the UV–Vis region, red shift in adsorption edge.  相似文献   

18.
Commercial anatase TiO2 powders (Tayca TKP101, TKP102) were ground with thiourea and annealed at 400 and 500 °C. Diffuse reflectance spectra (DRS) showed that the doping with thiourea shifted the TiO2 absorption towards the visible region. The absorption was observed to increase with increasing annealing temperature. Using the Kubelka–Munk relations, it was possible to determine the band-gap of the doped TiO2. Doped Tayca TiO2 TKP101 showed a band-gap of 2.12 and 2.24 eV calcined at 400 and 500 °C, respectively. Doped Tayca TiO2 TKP102 calcined at 400 and 500 °C showed in both cases a band-gap of 2.85 eV. X-ray photoelectron spectroscopy (XPS) revealed that these doped TiO2, TKP101 annealed at 400 °C and TKP102 annealed at 400 and 500 °C present interstitial N-doping while doped TKP101 annealed at 500 °C showed a peak characteristic of substitutional N-doping. S-doped materials calcined at 500 °C presented only anionic S-doping. Nitrogen adsorption studies (BET) showed a loss of specific surface area (SSA) in annealed TiO2 samples. N- and S co-doped materials showed suitable photocatalytic activity under UV illumination towards Escherichia coli inactivation and also under visible light irradiation (400–500 nm). Applying different annealing temperatures led to a variety of structures for N and S incorporated in the crystalline network. TiO2 upon annealing showed a varying degree of hydroxylation and particles sizes. This seems to affect the trapping and transfer of the charge carriers generated under light and the semiconductor performance.  相似文献   

19.
《Ceramics International》2017,43(12):8648-8654
TiO2 microspheres and TiO2/carbon quantum dots (CQDs) composites with different CQDs contents were successfully synthesized via solvothermal and in situ hydrothermal method. The structure and morphology of the prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). Results showed that carbon elements were successfully doped into the TiO2 lattice (C-TiO2) and CQDs were hybrid with C-TiO2 microspheres. The X-ray photoelectron spectroscope (XPS), valence band XPS (VB-XPS) and UV–vis diffuse reflectance spectra (DRS) analyses revealed that carbon doped into TiO2 microspheres could lead to local energy levels in the band structure and generate valence band tails to absorb visible light. The photocatalytic activities of these samples were evaluated by the photodegradation of Rhodamine B (RhB) under visible light irradiation. C-TiO2/CQDs samples presented an enhanced photocatalytic performance compared with pristine TiO2, which could be attributed to the present of CQDs, acting as adsorption sites for RhB molecules and charge separation centers to impede the recombination and prolong the life time of electron and hole pairs.  相似文献   

20.
Aluminium-doped TiO2 mesoporous material was successfully fabricated by solid-state reaction with cetyltrimethylammonium bromide as a template agent and tetrabutyl orthotitanate as a precursor. The characteristic results from low-angle and wide-angle X-ray diffraction, high resolution transmission electron microscopy and energy dispersive spectroscopy, N2 absorption–desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet visible light spectroscopy and X-ray photoelectron spectroscopy (XPS) clearly showed that the mesoporous architecture of aluminium-doped TiO2 was composed of crystal wall and micro-/mesopore formed gradually by the mesopore degradation of anatase TiO2, and aluminium had been doped into the framework of anatase TiO2. The mesoporous Al-doped TiO2 material, not only possessed high thermal stability hexahedral mesostructure, large BET surface area and narrow distribution of pore size, but also showed excellent photodegradation behavior for Congo Red. Furthermore the medium UV–Vis absorption peak of mesoporous aluminium-doped TiO2 in the range 210–370 nm was the absorption peak of aluminium oxide nanoparticles locating the extraframework of TiO2. A small quantity of aluminium doped into anatase TiO2 could obviously improve photodegradation activity, and the photodegradation activity of aluminium-doped TiO2 was higher than that of pure TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号