首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PACE4 plays important roles in prostate cancer cell proliferation. The inhibition of this enzyme has been shown to slow prostate cancer progression and is emerging as a promising therapeutic strategy. In previous work, we developed a highly potent and selective PACE4 inhibitor, the multi‐Leu (ML) peptide, an octapeptide with the sequence Ac‐LLLLRVKR‐NH2. Here, with the objective of developing a useful compound for in vivo administration, we investigate the effect of N‐terminal modifications. The inhibitory activity, toxicity, stability, and cell penetration properties of the resulting analogues were studied and compared to the unmodified inhibitor. Our results show that the incorporation of a polyethylene glycol (PEG) moiety leads to a loss of antiproliferative activity, whereas the attachment of a lipid chain preserves or improves it. However, the lipidated peptides are significantly more toxic when compared with their unmodified counterparts. Therefore, the best results were achieved not by the N‐terminal extension but by the protection of both ends with the d ‐Leu residue and 4‐amidinobenzylamide, which yielded the most stable inhibitor, with an excellent activity and toxicity profile.  相似文献   

2.
Devising ways to up‐ or down‐regulate heme oxygenase activity is attracting much interest as a strategy for the treatment of a variety of disorders. With a view of obtaining compounds that exhibit high potency and selectivity as inhibitors of the heme oxygenase‐2 (HO‐2) isozyme (constitutive) relative to the heme oxygenase‐1 (HO‐1) isozyme (inducible), several 1,2‐disubstituted 1H‐benzimidazoles were designed and synthesized. Specifically, analogues were synthesized in which the C2 substituent was the following: (1H‐imidazol‐1‐yl)methyl, (N‐morpholinyl)methyl, cyclopentylmethyl, cyclohexylmethyl, or (norborn‐2‐yl)methyl. Compounds with the cyclic system in the C2 substituent being a carbocyclic ring, especially cyclohexyl or norborn‐2‐yl, and the N1 substituent being a ring‐substituted benzyl group, especially 4‐chlorobenzyl or 4‐bromobenzyl, best exhibited the target criteria of high potency and selectivity toward inhibition of HO‐2. The new candidates should be useful pharmacological tools and may have therapeutic applications.  相似文献   

3.
SSAO/VAP‐1 substrates may be valuable for the treatment or prevention of diabetes mellitus, as they show insulin‐mimetic properties. This review highlights the importance of studying the relevant steric and electronic features in the development of new ligands with better SSAO/VAP‐1 recognition, enhanced selectivity over other amine oxidases, and improved metabolic behavior.

  相似文献   


4.
Virtual screening discovered two prospective hits as potential leads for aldose reductase inhibition. Based on their crystal structures with the enzyme, a systematic optimization has been performed to reveal a first structure–activity relationship. A central thiophen moiety and a terminal nitro group exhibit the best binding properties.

  相似文献   


5.
6.
A strategy that combines virtual screening and structure‐guided selection of fragments was used to identify three unexplored classes of human DHODH inhibitor compounds: 4‐hydroxycoumarins, fenamic acids, and N‐(alkylcarbonyl)anthranilic acids. Structure‐guided selection of fragments targeting the inner subsite of the DHODH ubiquinone binding site made these findings possible with screening of fewer than 300 fragments in a DHODH assay. Fragments from the three inhibitor classes identified were subsequently chemically expanded to target an additional subsite of hydrophobic character. All three classes were found to exhibit distinct structure–activity relationships upon expansion. The novel N‐(alkylcarbonyl)anthranilic acid class shows the most promising potency against human DHODH, with IC50 values in the low nanomolar range. The structure of human DHODH in complex with an inhibitor of this class is presented.  相似文献   

7.
Understanding the correlation between structural features of small‐molecule drugs and their mode of action is a fascinating topic and crucial for the drug‐discovery process. However, in many cases, knowledge of the exact parameters that dictate the mode of action is still lacking. Following a large screening for ubiquitin specific protease 2 (USP2) inhibition, an effective para‐quinone‐based inhibitor with an unclear mode of action was identified. To gain a deeper understanding of the mechanism of inhibition, a set of para‐quinones were prepared and studied for USP2 inhibition, electrocatalysis, and reactive oxygen species (ROS) quantification. The excellent correlation obtained from the above‐mentioned studies disclosed a distinct pattern of “N?C=O?N” in the bicyclic para‐quinones to be a crucial factor for ROS generation, and demonstrated that minor changes in such a skeleton drastically altered the ROS‐generating ability. The knowledge acquired herein would serve as an important guideline for future medicinal chemistry optimization of related structures to select the preferred mode of action.  相似文献   

8.
Combretastatin A‐4 derivatives : A series of combretastatin A‐4‐derived 1‐benzyl‐4,5,6‐trimethoxyindoles was designed and prepared as a novel class of potent antimitotic agents acting through the colchicine binding site on the microtubule.

  相似文献   


9.
Cyclohexylcarbamic acid aryl esters are a class of fatty acid amide hydrolase (FAAH) inhibitors, which includes the reference compound URB597. The reactivity of their carbamate fragment is involved in pharmacological activity and may affect their pharmacokinetic and toxicological properties. We conducted in vitro stability experiments in chemical and biological environments to investigate the structure–stability relationships in this class of compounds. The results show that electrophilicity of the carbamate influences chemical stability, as suggested by the relation between the rate constant of alkaline hydrolysis (log kpH9) and the energy of the lowest unoccupied molecular orbital (LUMO). Introduction of small electron‐donor substituents at conjugated positions of the O‐aryl moiety increased the overall hydrolytic stability of the carbamate group without affecting FAAH inhibitory potency, whereas peripheral non‐conjugated hydrophilic groups, which favor FAAH recognition, helped decrease oxidative metabolism in the liver.  相似文献   

10.
11.
12.
Bivalent modulators of P‐glycoprotein : A small library of flavonoid homodimers and heterodimers was synthesized, and their in vitro activity in reversing paclitaxel resistance was evaluated along with structure–activity relationships. SAR trends indicate that flavonoid dimers with nonpolar, hydrophobic, less bulky substituents generally show more potent reversing activity. This will help guide future efforts in the search for more potent compounds.

  相似文献   


13.
N‐Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator‐activated receptor‐α (PPAR‐α). Compounds that feature an α‐amino‐β‐lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti‐inflammatory effects that are mediated through FAE‐dependent activation of PPAR‐α. We synthesized and tested a series of racemic, diastereomerically pure β‐substituted α‐amino‐β‐lactones, as either carbamate or amide derivatives, investigating the structure–activity and structure–stability relationships (SAR and SSR) following changes in β‐substituent size, relative stereochemistry at the α‐ and β‐positions, and α‐amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β‐position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability.  相似文献   

14.
Covalent bonds not required : We describe a novel approach in which the concepts of fragment‐based ligand discovery are combined with chemical array techniques to yield bivalent inhibitors. A pair of fragments is mixed and covalently attached to a glass slide by photolinking immobilization. The method does not require the compounds to have specific functional groups, and tedious steps for protein purification are avoided. Thus, the on‐chip fragment‐based approach is relatively simple and efficient for obtaining high‐affinity ligands.

  相似文献   


15.
16.
Dengue is a systemic viral infection that is transmitted to humans by Aedes mosquitoes. No vaccines or specific therapeutics are currently available for dengue. Lycorine, which is a natural plant alkaloid, has been shown to possess antiviral activities against flaviviruses. In this study, a series of novel lycorine derivatives were synthesized and assayed for their inhibition of dengue virus (DENV) in cell cultures. Among the lycorine analogues, 1‐acetyllycorine exhibited the most potent anti‐DENV activity (EC50=0.4 μM ) with a reduced cytotoxicity (CC50>300 μM ), which resulted in a selectivity index (CC50/EC50) of more than 750. The ketones 1‐acetyl‐2‐oxolycorine (EC50=1.8 μM ) and 2‐oxolycorine (EC50=0.5 μM ) also exhibited excellent antiviral activities with low cytotoxicity. Structure–activity relationships for the lycorine derivatives against DENV are discussed. A three‐dimensional quantitative structure–activity relationship model was established by using a comparative molecular‐field analysis protocol in order to rationalize the experimental results. Further modifications of the hydroxy group at the C1 position with retention of a ketone at the C2 position could potentially lead to inhibitors with improved overall properties.  相似文献   

17.
(3S,4R)‐23,28‐Dihydroxyolean‐12‐en‐3‐yl (2E)‐3‐(3,4‐dihydroxyphenyl)acrylate ( 1 a ), which possesses significant neuritogenic activity, was isolated from the traditional Chinese medicine (TCM) plant, Desmodium sambuense. To confirm the structure and to assess biological activity, we semi‐synthesized 1 a from commercially available oleanolic acid. A series of novel 1 a derivatives was then designed and synthesized for a structure–activity relationship (SAR) study. All synthetic derivatives were characterized by analysis of spectral data, and their neuritogenic activities were evaluated in assays with PC12 cells. The SAR results indicate that the number and position of the hydroxy groups on the phenyl ring and the triterpene moiety, as well as the length of the (saturated or unsaturated) alkyl chain that links the phenyl ring with the triterpene critically influence neuritogenic activity. Among all the tested compounds, 1 e [(3S,4R)‐23,28‐dihydroxyolean‐12‐en‐3‐yl (2E)‐3‐(3,4,5‐trihydroxyphenyl)acrylate] was found to be the most potent, inducing significant neurite outgrowth at 1 μm .  相似文献   

18.
WEE1 kinase regulates the G2/M cell‐cycle checkpoint, a critical mechanism for DNA repair in cancer cells that can confer resistance to DNA‐damaging agents. We previously reported a series of pyrazolopyrimidinones based on AZD1775, a known WEE1 inhibitor, as an initial investigation into the structural requirements for WEE1 inhibition. Our lead inhibitor demonstrated WEE1 inhibition in the same nanomolar range as AZD1775, and potentiated the effects of cisplatin in medulloblastoma cells, but had reduced single‐agent cytotoxicity. These results prompted the development of a more comprehensive series of WEE1 inhibitors. Herein we report a series of pyrazolopyrimidinones and identify a more potent WEE1 inhibitor than AZD1775 and additional compounds that demonstrate that WEE1 inhibition can be achieved with reduced single‐agent cytotoxicity. These studies support that WEE1 inhibition can be uncoupled from the potent cytotoxic effects observed with AZD1775, and this may have important ramifications in the clinical setting where WEE1 inhibitors are used as chemosensitizers for DNA‐targeted chemotherapy.  相似文献   

19.
A small library of 2,3‐dihydroxybenzamide‐ and N‐(2,3‐dihydroxyphenyl)‐4‐sulfonamide‐based microsomal prostaglandin E2 synthase‐1 (mPGES‐1) inhibitors was identified following a step‐by‐step optimization of small aromatic fragments selected to interact in focused regions in the active site of mPGES‐1. During the virtual optimization process, the 2,3‐dihydroxybenzamide moiety was first selected as a backbone of the proposed new chemical entities; the identified compounds were then synthesized and biologically evaluated, identifying derivatives with very promising inhibitory activities in the micromolar range. Subsequent structure‐guided replacement of the 2,3‐dihydroxybenzamide by the N‐(2,3‐dihydroxyphenyl)sulfonamide moiety led to the identification of N‐(2,3‐dihydroxyphenyl)‐4‐biphenylsulfonamide ( 6 ), the most potent small molecule of the series (IC50=0.53±0.04 μm ). The simple synthetic procedure and the possibility of enhancing the potency of this class of inhibitors through additional structural modifications pave the way for further development of new molecules with mPGES‐1‐inhibitory activity, with potential application as anti‐inflammatory and anticancer agents.  相似文献   

20.
A novel series of diarylpyrimidine analogues (DAPYs) featuring a naphthyl moiety at the C4 position were designed, with all compounds exhibiting strong activity against wild‐type HIV‐1.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号