首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes the effect of treatment of Bis(3‐triethoxysilyl propyl)tetrasulfane (silane coupling agent, Si69, TESPT) on in situ sodium activated, organo modified bentonite clay – styrene butadiene rubber (SBR) nanocomposite. transmission electron microscopy and Wide angle X‐ray diffraction indicated the intercalation as well as partial exfoliation in both the organoclay and silane treated organoclay compound. It was found that about 5% of silane with respect to clay was the optimum dose for the treatment. Around 15% improvement in tensile and tear strength was observed due to silane treatment. Silane treated organoclay exhibited substantial improvement of the fatigue life, compression set, and rebound property. A detailed study of physical property was carried out. A comparison with low and high structure carbon black filled compound was also carried out. It revealed that the silane treatment helped organoclay to achieve comparable property of the compound having equivalent carbon black loading. Probable mechanism of interaction of silane with clay has also been proposed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Thermoplastic polyurethane (TPU)/clay nanocomposite films were produced by incorporation of organo‐modified montmorillonite clay (Cloisite 30B) in TPU matrix by two different melt‐mixing routes (direct and master‐batch‐based mixing), followed by compression molding. In master‐batch mixing where the master‐batch was prepared by mixing of clay and TPU in a solvent, better dispersion of clay‐layers was observed in comparison to the nanocomposites produced by direct mixing. As a consequence, superior mechanical and gas barrier properties were obtained by master‐batch mixing route. The master‐batch processing resulted in 284 and 236% increase in tearing strength and tearing energy, respectively, with 5 wt % clay‐loading. Interestingly, in case of master‐batch mixing, the tensile strength, stiffness as well as breaking extension increased simultaneously up to 3 wt % clay‐loading. The helium gas permeability reduced by about 39 and 31% for the TPU/clay nanocomposites produced by mater‐batch and direct mixing routes, respectively, at 3 wt % loading of clay. Finally, the gas permeability results have been compared using three different gas permeability models and a good correlation was observed at lower volume fraction of clay. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46422.  相似文献   

3.
Organic–inorganic hybrids involving cyanate ester and hydroxyl‐terminated polydimethylsiloxane (HTPDMS) modified diglycidyl ether of bisphenol A (DGEBA; epoxy resin) filled with organomodified clay [montmorillonite (MMT)] nanocomposites were prepared via in situ polymerization and compared with unfilled‐clay macrocomposites. The epoxy‐organomodified MMT clay nanocomposites were prepared by the homogeneous dispersion of various percentages (1–5%), and the resulting homogeneous epoxy/clay hybrids were modified with 10% HTPDMS and γ‐aminopropyltriethoxysilane as a coupling agent in the presence of a tin catalyst. The siliconized epoxy/clay prepolymer was further modified separately with 10% of three different types of cyanate esters, namely, 4,4′‐dicyanato‐2,2′‐diphenylpropane, 1,1′‐bis(3‐methyl‐4‐cyanatophenyl) cyclohexane, and 1,3‐dicyanato benzene, and cured with diaminodiphenylmethane as a curing agent. The reactions during the curing process between the epoxy, siloxane, and cyanate were confirmed by Fourier transform infrared analysis. The results of dynamic mechanical analysis showed that the glass‐transition temperatures of the clay‐filled hybrid epoxy systems were lower than that of neat epoxy. The data obtained from mechanical studies implied that there was a significant improvement in the strength and modulus by the nanoscale reinforcement of organomodified MMT clay with the matrix resin. The morphologies of the siloxane‐containing, hybrid epoxy/clay systems showed heterogeneous character due to the partial incompatibility of HTPDMS. The exfoliation of the organoclay was ascertained from X‐ray diffraction patterns. The increase in the percentage of organomodified MMT clay up to 5 wt % led to a significant improvement in the mechanical properties and an insignificant decrease in the glass‐transition temperature versus the unfilled‐clay systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Well‐dispersed poly(methyl methacrylate) (PMMA)–bentonite clay composite was synthesized by emulsion polymerization using methyl methacrylate (MMA) monomer and 3% sodium carbonate treated bentonite clay. The composite lost its transparency normally encountered with the neat PMMA. The composite was characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), vicat softening point (VSP), dynamic mechanical thermal analysis (DMTA), and tensile studies. The morphology was investigated by scanning electron microscopy (SEM) and atomic forced microscopy (AFM) as well. The crystallography was studied to estimate the changes in crystallographic planes by X‐ray diffraction (XRD) analysis. The particle size distribution was compared amongst neat bentonite clay, neat PMMA and the composite. The FTIR spectra reveal the fact that no new primary valence bond is formed between the clay and PMMA. The thermal stability of the composite is significantly improved, as indicated by the TGA and VSP studies. A substantial increase in glass transition temperature (Tg) approximately, 10°C was recorded from the DMTA as both the storage modulus and tan δ values underwent inflexion at higher temperatures in case of the composite compared with the pristine PMMA. The XRD pattern indicates increase in basal “d” spacing for the composite. The morphology from both the SEM and AFM is quite supportive to well‐dispersed exfoliation. The incorporation of nanosized activated clay particles in PMMA during its in situ polymerization from MMA led to the formation of nanocomposites. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

5.
Due to the short‐running of mineral oil and the increasing waste problem, biopolymers become more and more important. However, they still suffer from disadvantages, and in many cases, their properties are still insufficient to replace mineral oil based plastics. In this study, the biobased and biodegradable polymer poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) is reinforced by different clay types and their effect on the properties profile is investigated. Natural as well as organomodified montmorillonite and bentonite are dispersed by melt mixing within the PHBV matrix. Thermal stability, crystallization behavior, and dynamic mechanical properties as well as the materials morphology is analyzed. Dispersion state of the nanoclay is found to be crucial for the improvement of the material performance and well dispersed organomodified clays reveal to simultaneously improve different properties of PHBV matrix. POLYM. COMPOS., 34:1033–1040, 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
A tough and highly flexible hyperbranched epoxy and poly(amido‐amine) modified bentonite based thermosetting nanocomposite was demonstrated. The FTIR, XRD, and TGA analyses confirmed the modification of bentonite. The formation of partially exfoliated structure of the nanocomposite with good physicochemical interactions among the hyperbranched epoxy, poly(amido‐amine) hardener and modified clay was investigated by the FTIR, XRD, SEM, and TEM analyses. Significant improvements of 750% toughness, 300% elongation at break, 50% tensile strength, 300% modulus, and 250% adhesive strength of the pristine epoxy were achieved by the formation of nanocomposites with 3 wt % of modified clay. The experimental modulus values of the nanocomposites were compared with three theoretical models to account the interactions between filler and matrix. Thus, the studied epoxy nanocomposite has great potential to be used as an advanced epoxy thermoset. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40327.  相似文献   

7.
Two type of nanocomposites—an immiscible blend, high density polyethylene/polyamide 6 (HDPE/PA‐6) with organomodified clay, and a compatibilized blend, high density polyethylene grafted with acrylic acid/PA‐6 (PEAA/PA‐6) with organomodified clay—were prepared via melt compounding. X‐ray diffraction and transmission electron microscopy results revealed that the clay was intercalated and partially exfoliated. Positron annihilation lifetime spectroscopy has been utilized to investigate the free‐volume hole properties of two type of nanocomposites. The results show a negative deviation of free‐volume size in PEAA/PA‐6 blend, and a positive deviation in HDPE/PA‐6 blend, and I3 has a greater negative deviation in compatibilized blend than in immiscible blend due to interaction between dissimilar chains. For nanocomposites based on polymer blends, in immiscible HDPE/PA‐6/organomodified clay system, the variation of free‐volume size with clay content is not obvious and the free‐volume concentration and fraction decreased. While in the case of compatibilized PEAA/PA‐6/organomodified clay nanocomposites, complicated variation of free‐volume properties due to interactions between two phases and organomodified clay was observed. And the interaction parameter β shows the interactions between polymers and organomodified clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2463–2469, 2006  相似文献   

8.
South African Koppies bentonite was organomodified with single‐tail and double‐tail alkyl ammonium cationic surfactants with the latter intercalated both below and above the clay cationic exchange capacity. Corresponding poly(ethylene‐co‐vinylacetate) nanocomposites were prepared by twin‐screw melt compounding. Transmission electron microscopy indicated the presence of mixed nano‐sized and micron‐sized clay morphologies. X‐ray diffraction studies revealed that the crystallinity of the particles improved and that the d‐spacing values increased on incorporating the clays in the polymer matrix. It is postulated that, rather than indicating polymer co‐intercalation, this is caused by further intercalation of either excess surfactants or surfactant residues that were released by shear delamination of the clays during compounding. Improved mechanical properties were realized especially when using the clay containing the longer double‐tail surfactant intercalated at levels in excess of the cation exchange capacity of the clay. The nanocomposites showed improved tensile modulus and elongation‐at‐break values at the expense of a reduction in impact strength, whereas tensile strength was about the same as for the neat polymer. J. VINYL ADDIT. TECHNOL., 20:143–151, 2014. © 2014 Society of Plastics Engineers  相似文献   

9.
In this work, the properties of Poly(methyl methacrylate) (PMMA)‐clay nanocomposites prepared by three different manufacturing techniques viz., solution mixing, melt mixing, and in‐situ bulk polymerization in presence of clay were studied. Morphological analysis revealed that the extent of intercalation and dispersion of the nanoclay were relatively higher in the in‐situ polymerized nanocomposites than those of solution and melt blended nanocomposites. Differential Scanning Calorimetric study indicated maximum increment in Tg of the PMMA in the in‐situ polymerized PMMA‐clay nanocomposites. Thermo gravimetric analysis showed improved thermal stability of PMMA in all the nanocomposites and the maximum improvement was for in‐situ polymerized nanocomposites. The storage moduli of all the nanocomposites were higher than the pure PMMA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A series of polypropylene/maleic anhydride grafted polypropylene octane elastomer (MAH‐g‐POE)/clay (PPMC) nanocomposites were prepared with a novel compatilizer MAH‐g‐POE and different contents of octadecyl amine modified montmorillonite, and the effects of clay contents on the dynamic mechanical and rheological properties of these PPMC composites were investigated. With clay content increasing, the characteristic X‐ray diffraction peak changed from one to two with intensity decreasing, indicating the decreasing concentration of the intercalated clay layers. The gradual decrease of crystallization temperature of PPMC composites with the increase of clay loading should be attributed to the preferred intercalation of MAH‐g‐POE molecules into clay interlayer during blending, which is also reflected by scanning electron microscopy observations. By evaluating the activation energy for the glass transition process of MAH‐g‐POE and polypropylene (PP) in the PPMC composites, it is found that clay intercalation could cause the restriction effect on the glass transition of both MAH‐g‐POE and PP, and this restriction effect appears stronger for PP and attained the highest degree at 5 wt % clay loading. The melt elasticity of PP could be improved apparently by the addition of MAH‐g‐POE, and 5 wt % clay loading is enough for further enhancing the elastic proportion of PP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The natural local deposits of montmorillonite‐illite type of clay (MIC) were susceptible for acid activation. Raw clay was taken for experimentation, disintegrated on acid activation with sulfuric acid, which showed a particle size distribution. The montmorillonite and illite phases in the raw clay disappeared on acid activation and the activated clay, MIC(AA), showed with sodium‐aluminum‐silicate and beidellite phases apart from quartz (low) phase. The raw and acid‐activated clays were characterized using X‐ray powder diffractometry, X‐ray fluorescence, Fourier transform infrared spectrometry, and energy dispersive X‐ray, and their adsorption capacities were compared. When tested for adsorption of Pb(II) in aqueous solutions, the acid‐activated clay showed about 50% increased adsorption than raw clay. Sips adsorption isotherm and pseudo‐second‐order kinetic models were found to be best for the batch adsorption data. Kinetic studies showed the existence of film diffusion and intraparticle diffusion. A two‐stage batch adsorber was designed for the removal of Pb(II) from aqueous solutions. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

12.
Hydrophilic bentonite and organo‐montmorillonite (OMMT) have been modified by using a vegetable oil based amido‐amine compound. The modified nanoclays were characterized by using X‐ray diffraction (XRD) and FTIR techniques. Increase in the basal spacing after the modification was observed in both the cases. Further, Mesua ferrea L. seed oil based sulfonated epoxy resin nanocomposites have been prepared by using these modified nanoclays [3 (w/w) of clay in each case]. The XRD, TEM, SEM, FTIR, and rheological studies confirmed the formation of partially exfoliated nanocomposites. The study also confirmed that hydrophilic bentonite is not suitable nanofiller for the system, though modified bentonite slightly improves the performance characteristics of the pristine polymer. Modified OMMT based nanocomposite shows significant improvement in tensile strength (~ 1.7 times), scratch hardness (~ 2 times), gloss (14 units), and thermal stability (18°C) compared to the pristine system. This nanocomposite also exhibit better performance than OMMT based analogous nanocomposite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Fluorescence technique was employed for the measurement of the diffusion coefficient of oxygen into polystyrene (PS) latex/modified Na‐activated bentonite (MNaLB) clay composite films. Three different MNaLB content (0, 5, and 20 wt%) composite films were prepared from PS/MNaLB mixtures by annealing them at 200°C, above the glass transition temperature of PS for 10 min. To determine the diffusivity of oxygen in PS/MNaLB composite films, diffusion measurements were performed over the temperature range from 25 to 70°C. Pyrene (P) was used as the fluorescent agent. The diffusion coefficients (D) of oxygen were determined by combining the fluorescence quenching method with Fickian transport model, and were found as a function of temperature for each MNaLB content film. The results showed that D values are strongly dependent on both temperature and clay content in composite film. It was also observed that D coefficients obey Arrhenius behavior, from where diffusion activation energies were measured. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
The copolymerization of styrene with N‐phenyl maleimide in the presence of organomodified montmorillonite or Na+ montmorillonite was investigated. The conversion of the monomer was determined dilatometrically or gravimetrically. The copolymerization rate was accelerated and the polymerization activation energy in bulk and solution copolymerization decreased in the presence of montmorillonite. The tendency of alter‐copolymerization was enhanced for bulk and solution polymerization, but not affected for emulsion polymerization, by the addition of organomodified montmorillonite or Na+ montmorillonite. X‐ray diffraction studies showed that the methods of emulsion and bulk intercalative polymerization were more appropriate techniques for preparing nanocomposites with good dispersibility of clay. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1932–1937, 2005  相似文献   

15.
Catalytic activity during the formation of polyethylene (PE)/clay nanocomposites by in situ polymerization with metallocenes was studied. Ethylene polymerization was carried out with the homogeneous metallocene in the presence of the clay particles and using the clay‐supported metallocene catalyst. It was found that the catalytic activity of the homogeneous metallocene does not decrease in the presence of the clay particles and only a slight decrease of activity occurs using the clay‐supported catalyst. The modification of the clay with MAO cocatalyst as well as its intercalation with ODA surfactant were found to play an important role during the in situ formation of the PE/clay nanocomposite. ODA‐intercalated clay apparently facilitates the activation and monomer insertion processes on zirconocene centers located in internal sites of the clay structure. Although metallocene supported on MAO‐treated clay exhibited somewhat lower catalytic activity than that supported directly on the ODA‐intercalated clay, both systems favored the production of PE nanocomposites containing highly exfoliated clay particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Nanocomposites based on thermoplastic elastomeric polyurethane (TPU) and layered silicate clay were prepared by in situ synthesis. The properties of nanocomposites of TPU with unmodified clay were compared with that of organically modified clay. The nanocomposites of the TPU and organomodified clay showed better dispersion and exhibited superior properties. Exfoliation of the clay layers was observed at low organoclay contents, whereas an intercalated morphology was observed at higher clay contents. As one of major purposes of this study, the effect of the silicate layers in the nanocomposites on the order–disorder transition temperature (TODT) of the TPU was evaluated from the intensity change of the hydrogen‐bonded and free carbonyl stretching peaks and from the peak position change of the N? H bending peak. The presence of the organoclay increased TODT by approximately 10°C, which indicated improved stability in the phase‐separated domain structure. The layered silicate clay caused a tremendous improvement in the stiffness of the TPU; meanwhile, a reduction in the ultimate elongation was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3048–3055, 2006  相似文献   

17.
The effect of the foaming process on the intercalation of nanoclays in low‐density polyethylene–nanoclay nanocomposites was studied with in situ energy‐dispersive X‐ray diffraction (ED‐XRD) with synchrotron radiation as an X‐ray source. The solid nanocomposites containing different amounts of an organomodified montmorillonite were melt‐blended with blowing agents of different nature and later foamed by heating at atmospheric pressure. During the foaming process, ED‐XRD experiments were performed. These experiments allowed us to measure the time evolution of the interlamellar distance of the clay platelets during the melting and foaming of the nanocomposites; we obtained information about the evolution of the clay structure during the process. The experimental results show that the foaming process induced the intercalation of the clays independently of the blowing agent used. We also proved that the degree of intercalation depended on the expansion ratio reached and that the intercalation produced was larger when the blowing agent was azodicarbonamide. For this particular blowing agent, some interesting effects appeared; these included a catalytic effect of the clays on the decomposition temperature, a partial intercalation of the clays during melt blending, and a very stable structure of the clay particles after foaming. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43432.  相似文献   

18.
A comparison among different preparation methods of fluoropolymer/clay nanocomposites based on a fluoroelastomeric matrix (Tecnoflon® P959) and organomodified montmorillonite clay (Cloisite®20A) is reported. While melt blending leads to intercalated structures, the X‐ray diffraction patterns of solution blended nanocomposite suggest a better delamination of the clay platelets within the fluoropolymeric matrix (no diffraction peaks) if the solvent evaporation step is carried out very slowly (72 h) at ambient pressure and moderate temperature. For the solution blended‐slow evaporation nanocomposite, dynamic mechanical analysis and dynamic rheological measurements show a strong increase in G′, a lower damping peak at Tg, and a pseudosolid like behavior in the terminal flow region, suggesting a likely exfoliation of the organomodified clay in the fluoroelastomeric matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4484–4487, 2006  相似文献   

19.
An efficient extrusion process involving the injection of water while processing was used to prepare poly (styrene‐co‐acrylonitrile) (SAN)/clay nanocomposites with a high degree of nanoclay delamination. The usefulness of water‐assisted extrusion is highlighted here, in comparison with classical extrusion and roll mill processes. Cloisite® 30B (C30B), a montmorillonite clay organomodified with alkylammonium cations bearing 2‐hydroxyethyl chains, and pristine montmorillonite were melt blended with SAN (25 wt% AN) in a semi‐industrial scale extruder specially designed to allow water injection. XRD analysis, visual and TEM observations were used to evaluate the quality of clay dispersion. The relationship between the nanocomposite morphology and its mechanical and thermal properties was then investigated. The superiority of the SAN/C30B nanocomposite extruded with water has been evidenced by cone calorimetry tests and thermogravimetric measurements (TGA). These analyses showed a substantial improvement of the fire behavior and the thermal properties, while a 20% increase of the Young modulus was recorded. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

20.
BACKGROUND: In the present study, nanocomposites of cadmium sulphide (CdS) and zinc sulphide (ZnS) on a bentonite have been prepared via an in‐situ precipitation route and their catalytic behaviour was evaluated in the degradation of eosin B. RESULTS: It was found that the basal space of bentonite increased from 1.23 to 1.49 nm after CdS or ZnS nanoparticles were deposited on layers of the bentonite. The resulting CdS–bentonite and ZnS–bentonite nanocomposites can degrade eosin B from aqueous solution after 2 h under UV irradiation. CONCLUSION: A soft method for in situ synthesis of monodispersed, CdS and ZnS nanoparticles, using a reverse micelle type procedure, is reported. The synthesized CdS‐ and ZnS–bentonite composites combined the adsorptive ability of bentonite and the catalytic degradation ability of CdS and ZnS to remove eosin B from its aqueous solution efficiently. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号