首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Given their high neuroprotective potential, ligands that block GluN2B‐containing N‐methyl‐D ‐aspartate (NMDA) receptors by interacting with the ifenprodil binding site located on the GluN2B subunit are of great interest for the treatment of various neuronal disorders. In this study, a novel class of GluN2B‐selective NMDA receptor antagonists with the benzo[7]annulene scaffold was prepared and pharmacologically evaluated. The key intermediate, N‐(2‐methoxy‐5‐oxo‐6,7,8,9‐tetrahydro‐5H‐benzo[7]annulen‐7‐yl)acetamide ( 11 ), was obtained by cyclization of 3‐acetamido‐5‐(3‐methoxyphenyl)pentanoic acid ( 10 b ). The final reaction steps comprise hydrolysis of the amide, reduction of the ketone, and reductive alkylation, leading to cis‐ and trans‐configured 7‐(ω‐phenylalkylamino)benzo[7]annulen‐5‐ols. High GluN2B affinity was observed with cis‐configured γ‐amino alcohols substituted with a 3‐phenylpropyl moiety at the amino group. Removal of the benzylic hydroxy moiety led to the most potent GluN2B antagonists of this series: 2‐methoxy‐N‐(3‐phenylpropyl)‐6,7,8,9‐tetrahydro‐5H‐benzo[7]annulen‐7‐amine ( 20 a , Ki=10 nM ) and 2‐methoxy‐N‐methyl‐N‐(3‐phenylpropyl)‐6,7,8,9‐tetrahydro‐5H‐benzo[7]annulen‐7‐amine ( 23 a , Ki=7.9 nM ). The selectivity over related receptors (phencyclidine binding site of the NMDA receptor, σ1 and σ2 receptors) was recorded. In a functional assay measuring the cytoprotective activity of the benzo[7]annulenamines, all tested compounds showed potent NMDA receptor antagonistic activity. Cytotoxicity induced via GluN2A subunit‐containing NMDA receptors was not inhibited by the new ligands.  相似文献   

2.
To further explore the basic structural motifs (3S,6S)‐6‐benzhydryl‐N‐benzyltetrahydro‐2H‐pyran‐3‐amine and (2S,4R,5R)‐2‐benzhydryl‐5‐(benzylamino)tetrahydro‐2H‐pyran‐4‐ol, developed by our research group, for monoamine transport inhibition, we designed and synthesized various structurally altered analogues. The new compounds were tested for their affinities for the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET) in rat brain by measuring their capacity to inhibit the uptake of [3H]DA, [3H]5‐HT, and [3H]NE, respectively. Our results point to novel compounds with a TUI, DNRI, SNRI, or SSRI profile. Among the TUIs, compound 2 g exhibited a balanced potency for all three monoamine transporters (Ki: 60, 79, and 70.3 nM for DAT, SERT, and NET, respectively). In the rat forced swim test, compound 2 g produced a significant decrease in immobility in drug‐treated rats relative to vehicle, indicating a potential antidepressant property.  相似文献   

3.
Antiapoptotic Bcl‐2 family proteins, such as Bcl‐xL, Bcl‐2, and Mcl‐1, are often overexpressed in tumor cells, which contributes to tumor cell resistance to chemotherapies and radiotherapies. Inhibitors of these proteins thus have potential applications in cancer treatment. We discovered, through structure‐based virtual screening, a lead compound with micromolar binding affinity to Mcl‐1 (inhibition constant (Ki)=3 μM ). It contains a phenyltetrazole and a hydrazinecarbothioamide moiety, and it represents a structural scaffold not observed among known Bcl‐2 inhibitors. This work presents the structural optimization of this lead compound. By following the scaffold‐hopping strategy, we have designed and synthesized a total of 82 compounds in three sets. All of the compounds were evaluated in a fluorescence‐polarization binding assay to measure their binding affinities to Bcl‐xL, Bcl‐2, and Mcl‐1. Some of the compounds with a 3‐phenylthiophene‐2‐sulfonamide core moiety showed sub‐micromolar binding affinities to Mcl‐1 (Ki=0.3–0.4 μM ) or Bcl‐2 (Ki≈1 μM ). They also showed obvious cytotoxicity on tumor cells (IC50<10 μM ). Two‐dimensional heteronuclear single quantum coherence NMR spectra of three selected compounds, that is, YCW‐E5, YCW‐E10, and YCW‐E11, indicated that they bind to the BH3‐binding groove on Bcl‐xL in a similar mode to ABT‐737. Several apoptotic assays conducted on HL‐60 cells demonstrated that these compounds are able to induce cell apoptosis through the mitochondrial pathway. We propose that the compounds with the 3‐phenylthiophene‐2‐sulfonamide core moiety are worth further optimization as effective apoptosis inducers with an interesting selectivity towards Mcl‐1 and Bcl‐2.  相似文献   

4.
Heterobivalent ligands that possess pharmacophores designed to interact with both the A1 adenosine receptor (A1AR) and the β2 adrenergic receptor (β2AR) were prepared. More specifically, these ligands contain an adenosine moiety that is linked via its N6‐position to the amino group of the saligenin‐substituted ethanolamine moiety present in the well‐known β2AR agonist, salbutamol. The affinities of these ligands were determined at both receptors and found to vary with linker length and composition. With all compounds, affinity and functional potencies were found to have selectivity for the A1AR over the β2AR. In all cases, cAMP accumulation (a β2AR‐mediated response) was mainly observed when the A1AR was blocked or its function decreased by pertussis toxin or chronic agonist treatment. This suggests that heterobivalent compounds for receptors that mediate opposite responses might be useful for elucidating the mechanisms of receptor cross‐talk and how this interaction, in terms of responsiveness, may change under pathophysiological conditions.  相似文献   

5.
Cleavage and reconstitution of a bond in the piperidine ring of ifenprodil ( 1 ) leads to 7‐methoxy‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepin‐1‐ols, a novel class of NR2B‐selective NMDA receptor antagonists. The secondary amine 7‐methoxy‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepin‐1‐ol ( 12 ), which was synthesized in six steps starting from 2‐phenylethylamine 3 , represents the central building block for the introduction of several N‐linked residues. A distance of four methylene units between the basic nitrogen atom and the phenyl residue in the side chain results in high NR2B affinity. The 4‐phenylbutyl derivative 13 (WMS‐1405, Ki=5.4 nM ) and the conformationally restricted 4‐phenylcyclohexyl derivative 31 (Ki=10 nM ) represent the most potent NR2B ligands of this series. Whereas 13 shows excellent selectivity, the 4‐phenylcyclohexyl derivative 31 also interacts with σ1 (Ki=33 nM ) and σ2 receptors (Ki=82 nM ). In the excitotoxicity assay the phenylbutyl derivative 13 inhibits the glutamate‐induced cytotoxicity with an IC50 value of 360 nM , indicating that 13 is an NMDA antagonist.  相似文献   

6.
4,4'‐Biphenyl‐4‐acylate‐4'‐Nn‐butylcarbamates ( 1–8 ) are synthesized and characterized as highly potent and selective pseudo‐substrate inhibitors of Pseudomonas species lipase. Thus, the n‐butylcarbamate moieties of the inhibitors bind to the first acyl chain binding site (ACS) of the enzyme. Therefore, the ester moieties of the inhibitors may bind to the second ACS of the enzyme, due to the linear 4,4'‐biphenyl moiety of the inhibitors. –logKi, logk2, and logki values of carbamates 1–8 are multiply linearly correlated with the Taft steric constant (ES) and the Hansch hydrophobicity constant (π), but not with the Taft substituent constant (σ*). For –logKi, logk2, and logki correlations, values of δ are 0.8, 0.34, and 1.0, respectively, and values of ψ are 1.0, 0.4, and 1.3, respectively. Positive δ and ψ values for these correlations indicate that the second ACS of the enzyme prefers to bind to small and hydrophobic ester groups of the inhibitors. Among carbamates 1–8 , carbamate 3 , with a Ki value of 2.5 nM, is the most potent inhibitor.  相似文献   

7.
Following the concept of conformationally restriction of ligands to achieve high receptor affinity, we exploited the propellane system as rigid scaffold allowing the stereodefined attachment of various substituents. Three types of ligands were designed, synthesized and pharmacologically evaluated as σ1 receptor ligands. Propellanes with (1) a 2-methoxy-5-methylphenylcarbamate group at the “left” five-membered ring and various amino groups on the “right” side; (2) benzylamino or analogous amino moieties on the “right” side and various substituents at the left five-membered ring and (3) various urea derivatives at one five-membered ring were investigated. The benzylamino substituted carbamate syn,syn-4a showed the highest σ1 affinity within the group of four stereoisomers emphasizing the importance of the stereochemistry. The cyclohexylmethylamine 18 without further substituents at the propellane scaffold revealed unexpectedly high σ1 affinity (Ki = 34 nM) confirming the relevance of the bioisosteric replacement of the benzylamino moiety by the cyclohexylmethylamino moiety. Reduction of the distance between the basic amino moiety and the “left” hydrophobic region by incorporation of the amino moiety into the propellane scaffold resulted in azapropellanes with particular high σ1 affinity. As shown for the propellanamine 18, removal of the carbamate moiety increased the σ1 affinity of 9a (Ki = 17 nM) considerably. Replacement of the basic amino moiety by H-bond forming urea did not lead to potent σ ligands. According to molecular dynamics simulations, both azapropellanes anti-5 and 9a as well as propellane 18 adopt binding poses at the σ1 receptor, which result in energetic values correlating well with their different σ1 affinities. The affinity of the ligands is enthalpy driven. The additional interactions of the carbamate moiety of anti-5 with the σ1 receptor protein cannot compensate the suboptimal orientations of the rigid propellane and its N-benzyl moiety within the σ1 receptor-binding pocket, which explains the higher σ1 affinity of the unsubstituted azapropellane 9a.  相似文献   

8.
Animal models suggest that the chemokine ligand 2/CC‐chemokine receptor 2 (CCL2/CCR2) axis plays an important role in the development of inflammatory diseases. However, CCR2 antagonists have failed in clinical trials because of a lack of efficacy. We previously described a new approach for the design of CCR2 antagonists by the use of structure–kinetics relationships (SKRs). Herein we report new findings on the structure–affinity relationships (SARs) and SKRs of the reference compound MK‐0483, its diastereomers, and its structural analogues as CCR2 antagonists. The SARs of the 4‐arylpiperidine group suggest that lipophilic hydrogen‐bond‐accepting substituents at the 3‐position are favorable. However, the SKRs suggest that a lipophilic group with a certain size is desired [e.g., 3‐Br: Ki=2.8 nM , residence time (tres)=243 min; 3‐iPr: Ki=3.6 nM , tres=266 min]. Alternatively, additional substituents and further optimization of the molecule, while keeping a carboxylic acid at the 3‐position, can also prolong tres; this was most prominently observed in MK‐0483 (Ki=1.2 nM , tres=724 min) and a close analogue (Ki=7.8 nM ) with a short residence time.  相似文献   

9.
A study focused on the discovery of new chemical entities based on the 3‐arylcoumarin scaffold was performed with the aim of finding new adenosine receptor (AR) ligands. Thirteen synthesized compounds were evaluated by radioligand binding (A1, A2A, and A3) and adenylyl cyclase activity (A2B) assays in order to study their affinity for the four human AR (hAR) subtypes. Seven of the studied compounds proved to be selective A3AR ligands, with 3‐(4′‐methylphenyl)‐8‐(2‐oxopropoxy)coumarin ( 12 ) being the most potent (Ki=634 nM ). None of the compounds showed affinity for the A2B receptor, while four compounds were found to be nonselective AR ligands for the other three subtypes. Docking simulations were carried out to identify the hypothetical binding mode and to rationalize the interaction of these types of coumarin derivatives with the binding site of the three ARs to which binding was observed. The results allowed us to conclude that the 3‐arylcoumarin scaffold composes a novel and promising class of A3AR ligands. ADME properties were also calculated, with the results suggesting that these compounds are promising leads for the identification of new drug candidates.  相似文献   

10.
The design of compounds selective for the MT1 melatonin receptor is still a challenging task owing to the limited knowledge of the structural features conferring selectivity for the MT1 subtype, and only few selective compounds have been reported so far. N‐(Anilinoalkyl)amides are a versatile class of melatonin receptor ligands that include nonselective MT1/MT2 agonists and MT2‐selective antagonists. We synthesized a new series of N‐(anilinoalkyl)amides bearing 3‐arylalkyloxy or 3‐alkyloxy substituents at the aniline ring, looking for new potent and MT1‐selective ligands. To evaluate the effect of substituent size and shape on binding affinity and intrinsic activity, both flexible and conformationally constrained derivatives were prepared. The phenylbutyloxy substituent gave the best result, providing the partial agonist 4 a , which was endowed with high MT1 binding affinity (pKi=8.93) and 78‐fold selectivity for the MT1 receptor. To investigate the molecular basis for agonist recognition, and to explain the role of the 3‐arylalkyloxy substituent, we built a homology model of the MT1 receptor based on the β2 adrenergic receptor crystal structure in its activated state. A binding mode for MT1 agonists is proposed, as well as a hypothesis regarding the receptor structural features responsible for MT1 selectivity of compounds with lipophilic arylalkyloxy substituents.  相似文献   

11.
Bivalent ligands are potential tools to investigate the dimerisation of G‐protein‐coupled receptors. Based on the (R)‐argininamide BIBP 3226, a potent and selective neuropeptide Y Y1 receptor (Y1R) antagonist, we prepared a series of bivalent Y1R ligands with a wide range of linker lengths (8–36 atoms). Exploiting the high eudismic ratio (>1000) of the parent compound, we synthesised sets of R,R‐, R,S‐ and S,S‐configured bivalent ligands to gain insight into the “bridging” of two Y1Rs by simultaneous interaction with both binding sites of a putative receptor dimer. Except for the S,S isomers, the bivalent ligands are high‐affinity Y1R antagonists, as determined by Ca2+ assays on HEL cells and radioligand competition assays on human Y1R‐expressing SK‐N‐MC and MCF‐7 cells. Whereas the R,R enantiomers are most potent, no marked differences were observed relative to the corresponding meso forms. The difference between R,R and R,S diastereomers was most pronounced (about sixfold) in the case of the Y1R antagonist containing a spacer of 20 atoms in length. Among the R,R enantiomers, linker length and structural diversity had little effect on Y1R affinity. Although the bivalent ligands preferentially bind to the Y1R, the selectivity toward human Y2, Y4, and Y5 receptors was markedly lower than that of the monovalent argininamides. The results of this study neither support the presence of Y1R dimers nor the simultaneous occupation of both binding pockets by the twin compounds. However, as the interaction with Y1R dimers cannot be unequivocally ruled out, the preparation of a bivalent radioligand is suggested to determine the ligand–receptor stoichiometry. Aiming at such radiolabelled pharmacological tools, prototype twin compounds were synthesised, containing an N‐propionylated amino‐functionalised branched linker (Ki≥18 nM ), a tritiated form of which can be easily prepared.  相似文献   

12.
A series of new 14‐hydroxymorphinan analogues with a thiazole or imidazo[2,1‐b]thiazole fragment as the heterocyclic function fused to ring C were designed and synthesized. These compounds can be viewed as the result of a direct modification at ring C of the 14‐hydroxymorphinan scaffold. Among these compounds, three were identified as having potent binding affinity (~1 nM ) at both κ and μ receptors, and acting as agonists at κ and partial agonists or antagonists at μ receptors. In view of the promising results from studies on compounds with mixed κ and μ receptor activities, these new compounds warrant further investigation.  相似文献   

13.
Subtype‐selective neurotensin receptor 2 (NTS2) ligands can be used as molecular probes to investigate the physiological role of neurotensinergic systems and serve as lead compounds to initiate the development of drugs for the treatment of tonic pain. Starting from our recently described NTS2 ligand 1 , structural variants of type 2 were synthesized to further improve binding affinity and selectivity to gain metabolic stability. The peptide–peptoid hybrid 2 b showed excellent NTS2 binding affinity (Ki=2.8 nM ) and 22 000‐fold selectivity over NTS1, as well as metabolic stability over 32 h in a serum degradation assay. Employing a MAPK‐driven luciferase reporter gene assay and an IP accumulation assay, the neurotensin mimetic 2 b displayed respective inhibitions of constitutive activity exceeding 4.3‐ and 3.9‐fold that of the inverse agonist activity of the endogenous ligand neurotensin.  相似文献   

14.
Synthesis, biological activity, and structure–selectivity relationship (SSR) studies of a novel series of potential dopamine D3 receptor radioligands as imaging agents for positron emission tomography (PET) are reported. Considering a structurally diverse library of D3 ligands, SSR studies were performed for a new series of fluorinated pyridinylphenyl amides using CoMFA and CoMSIA methods. The in vitro D3 affinities of the predicted series of biphenyl amide ligands 9 a – d revealed single‐digit to sub‐nanomolar potencies (Ki=0.52–1.6 nM ), displaying excellent D3 selectivity over the D2 subtype of 110‐ to 210‐fold for the test compounds 9 a – c . Radiofluorination by nucleophilic substitution of Br or NO2 by 18F led to radiochemical yields of 66–92 % for [18F] 9 a – d . However, the specific activities of [18F] 9 b and [18F] 9 d were insufficient, rendering their use for in vivo studies impossible. Biodistribution studies of [18F] 9 a and [18F] 9 c using rat brain autoradiography revealed accumulation in the ventricles, thus indicating insufficient biokinetic properties of [18F] 9 a and [18F] 9 c for D3 receptor imaging in vivo.  相似文献   

15.
8‐Benzyl‐substituted tetrahydropyrazino[2,1‐f]purinediones were designed as tricyclic xanthine derivatives containing a basic nitrogen atom in the tetrahydropyrazine ring to improve water solubility. A library of 69 derivatives was prepared and evaluated in radioligand binding studies at adenosine receptor (AR) subtypes and for their ability to inhibit monoamine oxidases (MAO). Potent dual‐target‐directed A1/A2A adenosine receptor antagonists were identified. Several compounds showed triple‐target inhibition; one of the best compounds was 8‐(2,4‐dichloro‐5‐fluorobenzyl)‐1,3‐dimethyl‐6,7,8,9‐tetrahydropyrazino[2,1‐f]purine‐2,4(1H,3H)‐dione ( 72 ) (human AR: Ki A1 217 nM , A2A 233 nM ; IC50 MAO‐B: 508 nM ). Dichlorinated compound 36 [8‐(3,4‐dichlorobenzyl)‐1,3‐dimethyl‐6,7,8,9‐tetrahydropyrazino[2,1‐f]purine‐2,4(1H,3H)‐dione] was found to be the best triple‐target drug in rat (Ki A1 351 nM , A2A 322 nm; IC50 MAO‐B: 260 nM ), and may serve as a useful tool for preclinical proof‐of‐principle studies. Compounds that act at multiple targets relevant for symptomatic as well as disease‐modifying treatment of neurodegenerative diseases are expected to show advantages over single‐target therapeutics.  相似文献   

16.
With the aim to develop new σ2 receptor ligands, spirocyclic piperidines or cyclohexanamines with 2-benzopyran and 2-benzofuran scaffolds were connected to the 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline moiety by variable linkers. In addition to flexible alkyl chains, linkers containing an amide as functional group were synthesized. The 2-benzopyran and 2-benzofuran scaffold of the spirocyclic compounds were synthesized from 2-bromobenzaldehyde. The amide linkers were constructed by acylation of amines with chloroacetyl chloride and subsequent nucleophilic substitution, the alkyl linkers were obtained by LiAlH4 reduction of the corresponding amides. For the development of σ2 receptor ligands, the spirocyclic 2-benzopyran scaffold is more favorable than the ring-contracted 2-benzofuran system. Compounds bearing an alkyl chain as linker generally show higher σ affinity than acyl linkers containing an amide as functional group. A higher σ1 affinity for the cis-configured cyclohexanamines than for the trans-configured derivatives was found. The highest σ2 affinity was observed for cis-configured spiro[[2]benzopyran-1,1′-cyclohexan]-4′-amine connected to the tetrahydroisoquinoline system by an ethylene spacer (cis- 31 , Ki2)=200 nM; the highest σ1 affinity was recorded for the corresponding 2-benzofuran derivative with a CH2C=O linker (cis- 29 , Ki1)=129 nM).  相似文献   

17.
Based on the potent phosphodiesterase 10 A (PDE10A) inhibitor PQ‐10, we synthesized 32 derivatives to determine relationships between their molecular structure and binding properties. Their roles as potential positron emission tomography (PET) ligands were evaluated, as well as their inhibitory potency toward PDE10A and other PDEs, and their metabolic stability was determined in vitro. According to our findings, halo‐alkyl substituents at position 2 of the quinazoline moiety and/or halo‐alkyloxy substituents at positions 6 or 7 affect not only the compounds′ affinity, but also their selectivity toward PDE10A. As a result of substituting the methoxy group for a monofluoroethoxy or difluoroethoxy group at position 6 of the quinazoline ring, the selectivity for PDE10A over PDE3A increased. The same result was obtained by 6,7‐difluoride substitution on the quinoxaline moiety. Finally, fluorinated compounds (R)‐7‐(fluoromethoxy)‐6‐methoxy‐4‐(3‐(quinoxaline‐2‐yloxy)pyrrolidine‐1‐yl)quinazoline ( 16 a ), 19 a – d , (R)‐tert‐butyl‐3‐(6‐fluoroquinoxalin‐2‐yloxy)pyrrolidine‐1‐carboxylate ( 29 ), and 35 (IC50 PDE10A 11–65 nM ) showed the highest inhibitory potential. Further, fluoroethoxy substitution at position 7 of the quinazoline ring improved metabolic stability over that of the lead structure PQ‐10.  相似文献   

18.
In a previous study we reported a class of compounds with a 2H‐thiazolo[3,2‐a]pyrimidine core structure as general inhibitors of anti‐apoptotic Bcl‐2 family proteins. However, the absolute stereochemical configuration of one carbon atom on the core structure remained unsolved, and its potential impact on the binding affinities of compounds in this class was unknown. In this study, we obtained pure R and S enantiomers of four selected compounds by HPLC separation and chiral synthesis. The absolute configurations of these enantiomers were determined by comparing their circular dichroism spectra to that of an appropriate reference compound. In addition, a crystal structure of one selected compound revealed the exocyclic double bond in these compounds to be in the Z configuration. The binding affinities of all four pairs of enantiomers to Bcl‐xL, Bcl‐2, and Mcl‐1 proteins were measured in a fluorescence‐polarization‐based binding assay, yielding inhibition constants (Ki values) ranging from 0.24 to 2.20 μM . Interestingly, our results indicate that most R and S enantiomers exhibit similar binding affinities for the three tested proteins. A binding mode for this compound class was derived by molecular docking and molecular dynamics simulations to provide a reasonable interpretation of this observation.  相似文献   

19.
Considerable efforts have been made to the development of small‐molecule inhibitors of antiapoptotic B‐cell lymphoma 2 (Bcl‐2) family proteins (such as Bcl‐2, Bcl‐xL, and Mcl‐1) as a new class of anticancer therapies. Unlike general inhibitors of the entire family, selective inhibitors of each member protein can hopefully reduce the adverse side effects in chemotherapy treatments of cancers overexpressing different Bcl‐2 family proteins. In this study, we designed four series of benzylpiperazine derivatives as plausible Bcl‐2 inhibitors based on the outcomes of a computational algorithm. A total of 81 compounds were synthesized, and their binding affinities to Bcl‐2, Bcl‐xL, and Mcl‐1 measured. Encouragingly, 22 compounds exhibited binding affinities in the micromolar range (Ki<20 μM ) to at least one target protein. Moreover, some compounds were observed to be highly selective binders to Mcl‐1 with no detectable binding to Bcl‐2 or Bcl‐xL, among which the most potent one has a Ki value of 0.18 μM for Mcl‐1. Binding modes of four selected compounds to Mcl‐1 and Bcl‐xL were derived through molecular docking and molecular dynamics simulations. It seems that the binding affinity and selectivity of these compounds can be reasonably interpreted with these models. Our study demonstrated the possibility for obtaining selective Mcl‐1 inhibitors with relatively simple chemical scaffolds. The active compounds identified by us could be used as lead compounds for developing even more potent selective Mcl‐1 inhibitors with potential pharmaceutical applications.  相似文献   

20.
Since its initial discovery as the basis for nicotinic acetylcholine receptor ligands, the 3-alkoxyisoxazole scaffold has been shown to be a versatile platform for the development of potent σ1 and σ2 receptor ligands. Herein we report a further SAR exploration of the 3-alkoxyisoxazole scaffold with the aim of obtaining potent σ2 receptor ligands. Various substitutions on the benzene ring and at the basic amino regions resulted in a total of 21 compounds that were tested for their binding affinities for the σ2 receptor. In particular, compound 51 [(2S)-1-(4-ammoniobutyl)-2-(((5-((3,4-dichlorophenoxy)methyl)isoxazol-3-yl)oxy)methyl)pyrrolidin-1-ium chloride] was identified as one of the most potent σ2 ligands within the series, with a Ki value of 7.9 nM. It demonstrated potent antiproliferative effects on both osteosarcoma cell lines 143B and MOS−J (IC50 values of 0.89 and 0.71 μM, respectively), relative to siramesine (IC50 values of 1.81 and 2.01 μM). Moreover, compound 51 inhibited clonal formation of osteosarcoma 143B cells at 1 μM, corresponding to half the dose required of siramesine for similar effects. The general cytotoxicity profile of compound 51 was assessed in a number of normal cell lines, including HaCaT, HAF, and LO2 cells. Furthermore, FACS analysis showed that compound 51 likely inhibits osteosarcoma cell growth by disruption of the cell cycle and promotion of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号