首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
简要分析了铜冷却壁的破损形式和破损机理,并结合首钢股份3座高炉操作实践,重点总结了铜冷却壁使用维护技术。铜冷却壁使用维护技术的关键是铜冷却壁热面必须要有一定厚度的渣皮,而要维持稳定且有一定厚度渣皮,一是炉外要强化冷却效果,二是炉内要维持良好的挂渣环境。首钢股份高炉通过控制合理的冷却水进水温度、冷却水流量和边沿煤气流分布等,投产多年以来实现了铜冷却壁零损坏的良好业绩。  相似文献   

2.
 在整个高炉结构中,炉身下部至炉腰炉腹位置是影响高炉寿命最薄弱环节之一,铜冷却壁应用该区域可形成“渣皮”作为永久性炉衬,有效延长高炉中部寿命,实现了高炉高效和长寿的统一。然而,在生产实践中渣皮频繁脱落,铜冷却壁热面裸露,导致铜冷却壁大面积破损,严重影响生产。针对鞍钢某高炉铜冷却壁破损情况进行了简单的介绍;采用金相分析、扫描电镜及能谱分析和化学分析方法,对破损的高炉炉腰段铜冷却壁进行取样研究。研究结果表明:在高炉内服役过程中,铜冷却壁中氧含量偏高,在受到高温煤气流冲蚀后,在其热面产生了“氢脆”现象,这是造成铜冷却壁破损的根本原因。提出了防止铜冷却壁破损的建议。  相似文献   

3.
《炼铁》2014,(3)
对鞍钢3号高炉铜冷却壁破损原因进行调查分析,认为渣皮稳定性差,铜冷却壁直接受到高温炉料、煤气流冲击造成磨损和氢脆侵蚀形成裂纹,是铜冷却壁破损的主要原因。  相似文献   

4.
 高炉铜冷却壁热面形成的渣皮是保障冷却壁寿命的关键。基于高炉中修,针对铜冷却壁热面的渣皮进行实地取样,通过化学成分分析、XRD分析以及SEM EDS分析,并结合FactSage热力学计算及激光法导热分析,对大型高炉铜冷却壁表面形成渣皮的化学成分、微观形貌、高温性能和导热性能进行系统研究,探明了大型高炉铜冷却壁热面渣皮的物相组成和基础性能。结果表明,高炉铜冷却壁渣皮具有明显的分层结构,主要物相为二铝酸钙(CaAl4O7)、硅灰石(Ca2Al2SiO7)和钙长石(CaAl2Si2O8)等;通过FactSage软件计算渣皮熔化温度和黏度,发现沿着渣皮的生长方向,熔化温度降低,流动性降低;并通过传热计算得出合理渣皮厚度条件下的热流强度,从而为高炉生产实践提供理论指导。  相似文献   

5.
徐永刚 《炼铁》2020,39(3):13-17
对酒钢1号、2号和7号高炉铜冷却壁的使用效果及维护情况进行了总结。自投产以来,1号、2号高炉均未出现铜冷却壁破损现象,而7号高炉在使用2年半后就出现铜冷却壁大面积破损现象,这与7号高炉铜冷却壁设计过长、原燃料条件较差、中心加焦操作制度有关。认为在高炉运行期间,形成稳定的煤气流分布及抑制边沿气流的操作制度,对铜冷却壁的使用效果及寿命至关重要。  相似文献   

6.
车玉满  孙鹏  李连成  孙波  郭天永 《炼铁》2007,26(5):18-21
对鞍钢铜冷却壁高炉操作管理模型的建立方法进行了阐述,并对在2号高炉上的实践进行了总结.根据经验知识和实验室热态模拟实验结果,利用传热模型反推计算,建立铜冷却壁高炉操作炉型管理模型,可对铜冷却壁热面渣皮厚度进行实时计算,实现操作炉型管理.鞍钢2号高炉应用结果表明,铜冷却壁操作管理模型可对渣皮脱落部位、炉腰和炉身下部铜冷却壁热面温度和渣皮厚度变化趋势进行判断,提示操作人员及时采取措施,控制渣皮厚度适宜并保持稳定,减少铜冷却壁区域热损失,并保证高炉操作炉型合理.  相似文献   

7.
鞍钢铜冷却壁高炉的热负荷管理   总被引:1,自引:0,他引:1  
对鞍钢2座相同铜冷却壁结构高炉的热负荷管理经验进行了总结.新2号高炉与新3号高炉的炉体结构、操作制度完全相同,但新3号高炉的热负荷、渣皮稳定性远不如新2号高炉.为加强对铜冷却壁渣皮稳定性管理,鞍钢开发铜冷却壁炉型管理模型,重点监视渣皮厚度与脱落情况变化,控制高炉热负荷在合适范围内,保证了高炉稳定顺行.  相似文献   

8.
《炼铁》2016,(3)
湘钢1号高炉铜冷却壁的主要破损形式是水管断裂和完全熔损。通过对破损铜冷却壁取样分析,初步探讨分析了铜冷却壁的破损机理。认为,原燃料变化频繁和高炉操作不稳定等原因导致渣皮不稳,铜冷却壁热面长时间暴露在高温煤气和炉料中,使铜冷却壁产生较大应力,在水管部位产生剪切力使水管断裂,而水管断裂后,采用卡死水管或穿金属软管等方式的冷却效果都较差,所以在铜冷却壁破损后期破损加剧,使得大量的铜冷却壁完全熔损。  相似文献   

9.
钱亮  程素森  朱清天 《冶金自动化》2006,30(4):20-23,33
介绍了高炉铜冷却壁的一种监控方法,实现了对铜冷却壁炉墙热面温度和渣皮厚度进行监控和高炉炉墙内型的可视化。从实践的角度证明了铜冷却壁炉墙监控的必要性,给出了本监控方法的实现思路。在对铜冷却壁前段渣皮进行监控的过程中发现:通过监控可以在操作过程中防止铜冷却壁裸露、结瘤等异常发生;通过调整高炉操作维持适当厚度的渣皮,能实现高炉长寿和高效的结合,最优化高炉操作和最大化高炉生产。  相似文献   

10.
根据热弹性力学理论,建立了渣皮厚度可变的铜冷却壁热-力耦合应力场分布计算模型,从铜冷却壁本体和炉渣-镶砖界面应力分布的角度分析了煤气温度、冷却制度、镶砖材质和炉渣性质等因素对铜冷却壁寿命及挂渣稳定性的影响规律.计算结果表明:煤气温度的升高使铜冷却壁本体应力线性升高,同时挂渣稳定性减弱;铜冷却壁本体应力值及挂渣稳定性均随渣皮厚度增加而呈现先下降后上升的趋势,实际生产中渣皮厚度应维持在30~60 mm之间;冷却水流速的增大会导致铜冷却壁本体应力值小幅上升,但可使挂渣稳定性增强;冷却水温的提升可小幅降低冷却壁本体应力,但会显著降低挂渣稳定性;镶砖热导率的提升和炉渣热膨胀系数的减小均有利于降低铜冷却壁本体应力并增强挂渣稳定性.   相似文献   

11.
高炉铜冷却壁传热分析   总被引:31,自引:4,他引:27  
利用自行开发的冷却器计算机软件,计算了铜冷却壁温度场。计算结果表明:铜冷却壁能够有效地降低炉内一侧冷却壁热面温度,使其表面能够迅速凝固一层渣铁壳,从而减小炉墙热量损失和延长冷却器寿命,最终延长高炉寿命。  相似文献   

12.
铜冷却壁炉墙内型管理传热学反问题模型   总被引:4,自引:3,他引:4  
铜冷却壁要长期安全地工作,在其热面必须有渣皮覆盖;同时铜冷却壁的高导热能力很可能导致炉墙结瘤,因此,对炉墙监控有利于高炉长寿,同时也是实现长寿和高效的结合点。结合首钢高炉的现场实际情况,采用传热学反问题的方法,开发了铜冷却壁炉墙内型管理模型,对渣皮状况进行跟踪,从而为高炉操作提供依据和条件,有利于避免铜冷却壁裸露、炉墙结瘤等异常发生。  相似文献   

13.
徐纪山 《钢铁》2014,49(5):30-35
 太钢3号高炉在炉腰至炉身下部安装了4层铜冷却壁,由于铜冷却壁的高导热性,使3号高炉在定检恢复时,多次出现渣皮脱落,热负荷波动频繁,严重时出现炉凉、崩料和煤气流失常等事故。针对定检后炉况难恢复的特点,3号高炉通过制订详细的定检休、送风计划,在送风后按目标节点恢复风、氧量,并对喷煤、风温、燃料比、渣铁热量和渣铁排放等进行量化控制,实现了定检35 h以上,20~24 h的成功快速恢复。  相似文献   

14.
宝钢4号高炉采用的新技术   总被引:1,自引:0,他引:1  
李有庆 《炼铁》2005,24(5):1-4
在分析的基础上,宝钢4号高炉建设应用了一系列新技术:如热压小炭砖炉缸结构、板壁结合的炉体冷却结构、铜冷却壁、新英巴渣处理技术、串罐无料钟炉顶、环缝洗涤煤气清洗工艺等先进技术,为4号高炉创造先进水平,实现高效、长寿、节能、环保奠定了坚实基础。  相似文献   

15.
铜冷却壁水管损坏时热面温度急剧升高,加剧冷却壁烧损。此时往往采用冷却柱恢复冷却能力,冷却柱为“点”冷却,冷却面积小且不易造衬。而利用冷却板代替损坏部位的冷却壁,容易形成平滑操作炉型,有利于高炉顺行。建立冷却板棋盘式布局模型,从冷却板间距、尺寸、冷却水速等方面分析炉壳表面以及冷却壁冷、热面的冷却中心温度,结果表明当煤气温度1500℃时,冷却间距从200mm增大到600mm,炉壳外表面冷却中心温度增高约230℃;冷却板水速从1m/s升至3m/s,炉壳外表面冷却中心的温度降低50℃左右;并与冷却柱比较发现,冷却板冷却效果明显强于冷却柱。  相似文献   

16.
介绍了国内外高炉技术的发展现状。大型化是高炉的发展趋势,高炉的装备技术、长寿技术、节能减排和能源利用技术的研究也不断有新突破。济钢3200m3高炉设计采用了带耐火材料内衬的高效荒煤气螺旋筒式旋风除尘器、嘉恒法渣处理工艺及渣余热回收技术、自主创新开发的炉腹复合铜冷却壁等"先进、实用、经济"的冶炼工艺和装备技术,投产后,高炉实现了安全、稳定、可靠运行。  相似文献   

17.
针对高炉炉墙结构复杂,铜冷却壁热面工况难以直接检测的问题,采用有限元分析技术,建立高炉炉腰下部区域炉墙三维稳态传热模型,并对不同工况下炉墙温度场分布进行仿真。通过结合仿真结果和现场可检测数据,不断修正热面边界条件,推算出铜冷却壁热面挂渣厚度,为高炉操作提供必要的信息和可靠的指导。  相似文献   

18.
高炉冷却壁非稳态传热研究   总被引:4,自引:0,他引:4  
钱中  吴俐俊  程惠尔  邓凯 《钢铁》2005,40(6):21-23
研究了铸钢、球墨铸铁和纯铜3种不同材质高炉冷却壁的非稳态传热过程。考察当高炉煤气温度分别为指数型和周期型变化时,冷却壁壁体温度场的变化情况。并根据不同材质冷却壁在非稳态工作过程中的表现,讨论这3种冷却壁的性能优劣。结果证明,铜质冷却壁是理想的长寿冷却壁,其性能明显优于铸钢和球墨铸铁冷却壁,并且这种优势在非稳态传热过程中表现的更为突出。同时铸钢冷却壁优于球墨铸铁冷却壁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号