首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiaofeng Xu  Wei Hu  Jushui Lai  Zhifeng Ying  Jiada Wu 《Vacuum》2010,84(11):1306-1309
Pulsed laser deposition has been utilized to synthesize impurity-doped ZnO thin films on silicon substrate. Large-sized-mismatched group-V elements (AV) including P, As, Sb and Bi were used as dopants. Hall effect measurements show that hole concentration in the order of 1016-1018 cm−3, resistivity in the range of 10-100 Ω cm, Hall mobility in the range of 10-100 cm2/Vs were obtained only for ZnO:As and ZnO:Bi thin films. X-ray diffraction measurements reveal that the films possess polycrystallinity or nanocrystallinity with ZnO (002) preferred orientation. Guided by X-ray photoemission spectroscopy analyses and theoretical calculations for large-sized-mismatched group-V dopant in ZnO, the AZnV-2VZn complexes are believed to be the most possible acceptors in the p-type AV-doped ZnO thin films.  相似文献   

2.
J.G. Jang  H.K. Shin 《Thin solid films》2009,517(14):4122-2300
A new high efficiency green light emitting phosphorescent device with an emission layer consisting of {4,4',4'-tris(N-carbazolyl)-triphenylamine[TCTA]/TCTA0.5TPBi0.5/1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene[TPBi]}:tris(2-phenylpyridine)iridium(III)[Ir(ppy)3] was fabricated and its electroluminescence characteristics were evaluated in comparison with those of devices with emission layers made of (TCTA0.5TPBi0.5):Ir(ppy)3 and (TCTA/ TPBi):Ir(ppy)3.The device with the emission layer consisting of (TCTA/TCTA0.5TPBi0.5/TPBi):Ir(ppy)3 showed a luminance of 11,000 cd/m2 at an applied voltage of 8 V and maximum current efficiency of 63 cd/A under a luminance of 500 cd/m2. The peak wavelength in the electroluminescent spectral and color coordinate on the Commission Internationale de I'Eclairage(CIE) chart were 513 nm and (0.31, 0.62) in this device, respectively. Under a luminance of 10000 cd/m2, the current efficiency of this device was 55 cd/A, which is 1.4 and 1.1 times better than those of the devices with the emission layers made of (TCTA0.5TPBi0.5):Ir(ppy)3 and (TCTA/TPBi):Ir(ppy)3, respectively.  相似文献   

3.
The present work was made to investigate the effect of oxygen pressure of SiOx layer on the electrical properties of Ga-doped ZnO (GZO) films deposited on poly-ethylene telephthalate (PET) substrate by utilizing the pulsed-laser deposition at ambient temperature. For this purpose, the SiOx buffer layers were deposited at various oxygen pressures ranging from 13.3 to 46.7 Pa. With increasing oxygen pressure during the deposition of SiOx layer as a buffer, the electrical resistivity of GZO/SiOx/PET films gradually decreased from 7.6 × 10− 3 to 6.8 × 10− 4 Ω·cm, due to the enhanced mobility of GZO films. It was mainly due to the grain size of GZO films related to the roughened surface of the SiOx buffer layers. In addition, the average optical transmittance of GZO/SiOx/PET films in a visible regime was estimated to be ~ 90% comparable to that of GZO deposited onto a glass substrate.  相似文献   

4.
The fabrication of epitaxially grown Zn-substituted LiNbO3 (Zn:LiNbO3) waveguide films and rib waveguides is reported and detailed investigations about microstructure, morphology and optical waveguide properties are provided. Zn:LiNbO3 films were grown on congruent X-cut LiNbO3 substrates by a modified liquid phase epitaxy in solid–liquid coexisting solutions. The homogeneously Zn-substituted films exhibit high crystalline perfection and extremely flat surfaces with averaged surface roughness of rms = 0.2–0.3 nm. At the film/substrate interface a Zn-containing transient layer has been observed, which allows the growth of elastically strained Zn:LiNbO3 film lattices. X-ray diffraction reciprocal-space measurements prove the pseudomorphic film growth. The refractive index difference between substrate and film depends on the zinc substitution content, which increase with rising growth temperatures. For films with 5.3 mol% Zn (Δno ≈ +5 × 10−3) only ordinary ray propagation was observed, while for films with 7.5 mol% Zn (Δno ≈ +8 × 10−3, Δne ≈ +5 × 10−3) both modes, TM and TE propagate. Stress-induced refractive index changes are in the order of Δn ≈ 10−4. In rib waveguide microstructures singlemode propagation with nearly symmetrical field distribution has been observed. To demonstrate the potential of the proton exchange-assisted dry-etching technique interferometer microstructures were fabricated.  相似文献   

5.
Airborne particulate matter (PM2.5 and PM10) concentrations were measured in Zonguldak, Turkey from January to December 2007, using dichotomous Partisol 2025 sampler. Collected particulate matter was analyzed for 14 selected polycyclic aromatic hydrocarbons (PAHs) by high-performance liquid chromatography with fluorescence detection (HPLC-FL). The seasonal variations of PM2.5 and PM10 concentrations were investigated together with their relationships with meteorological parameters. The maximum daily concentrations of PM2.5 and PM10 reached 83.3 μg m−3 and 116.7 μg m−3 in winter, whereas in summer, they reached 32.4 μg m−3 and 66.7 μg m−3, respectively. Total concentration of PM10-associated PAHs reached 492.4 ng m−3 in winter and 26.0 ng m−3 in summer times. The multiple regression analysis was performed to predict total PM2.5- and PM10-associated PAHs and benzo(a)pyrene-equivalent (BaPE) concentrations with respect to meteorological parameters and particulate mass concentrations with the determination coefficients (R2) of 0.811, 0.805 and 0.778, respectively. The measured mean values of concentrations of total PM2.5- and PM10-associated PAHs were found to be 88.4 ng m−3 and 93.7 ng m−3 while their predicted mean values were found to be 92.5 ng m−3 and 98.2 ng m−3, respectively. In addition, observed and predicted mean concentration values of PM2.5-BaPE were found to be 14.1 ng m−3 and 14.6 ng m−3. The close annual mean concentrations of measured and predicted total particulate related PAHs imply that the models can be reliably used for future predictions of particulate related PAHs in urban atmospheres especially where fossil fuels are mainly used for heating.  相似文献   

6.
P.H. Tai  C.H. Jung  Y.K. Kang  D.H. Yoon   《Thin solid films》2009,517(23):129-6297
12CaO·7Al2O3 electride (C12A7:e) doped indium tin oxide (ITO) (ITO:C12A7:e) thin films were fabricated on a glass substrate by an RF magnetron co-sputtering system with increasing number of C12A7:e chips (from 1 to 7) and at various oxygen partial pressure ratios. The optical transmittance of the ITO:C12A7:e thin film was higher than 70% in the visible wavelength region. In the electrical properties of the thin film, a decrease of the carrier concentration from 2.6 × 1020 cm− 3 to 2.1 × 1018 cm− 3 and increase of the resistivity from 1.4 × 10− 3 Ω cm to 4.1 × 10− 1 Ω cm were observed with increasing number of C12A7:e chips and oxygen partial pressure ratios. It was also observed that the Hall mobility was decreased from 17.27 cm2·V− 1·s− 1 to 5.13 cm2·V− 1·s− 1. The work function of the ITO thin film was reduced by doping it with C12A7:e.  相似文献   

7.
The irradiation effect in Ni3N/Si bilayers induced by 100 MeV Au ions at fluence 1.5 × 1014 ions/cm2 was investigated at room temperature. Grazing incidence X-ray diffraction determined the formation of Ni2Si and Si3N4 phases at the interface. The roughness of the thin film was measured by atomic force microscopy. X-ray reflectivity was used to measure the thickness of thin films. X-ray photoelectron spectroscopy has provided the elemental binding energy of Ni3N thin films. It was observed that after irradiation (Ni 2p3/2) peak shifted towards a lower binding energy. Optical properties of nickel nitride films, which were deposited onto Si (100) by ion beam sputtering at vacuum 1.2 × 10−4 torr, were examined using Au ions. In-situ IV measurements on Ni3N/Si samples were also undertaken at room temperature which showed that there is an increase in current after irradiation.  相似文献   

8.
In the present work, LiMn2O4 thin films have been prepared by pulsed laser deposition on stainless steel substrates. The films deposited at 400 °C and 200 mTorr of oxygen were mainly composed of nano-crystals less than 100 nm and their agglomerates. Three different electrochemical methods including CV, EIS and PITT were applied to measure the overall Li+-ion diffusion coefficients and charge-transfer resistances at various potentials from 3.85 to 4.5 V. The Li+ diffusion coefficients were in the range of 10−12 to 10−10 cm2 s−1, depending on the potentials. It was found that the charge-transfer resistances decreased with the increase of potentials. Especially, relatively high diffusion coefficients and low charge-transfer resistances were observed above 4.2 V.  相似文献   

9.
Absorption, emission and excitation spectra of bis(10-hydroxybenzo [h] quinolinato)-beryllium (Bebq2) were studied using polystyrene film doped with 5 wt% Bebq2, N,N-di(naphthalene-1-yl)-N,N-diphenyl-benzidene (NPB) film doped with 60 wt% Bebq2, and neat film. The monomer and aggregate of Bebq2 give fluorescence at 492 and 511 nm at 12 K, respectively. A strong T1 emission with a vibronic structure was observed from Bebq2 below 70 K by heavily doping with phosphorescent tris(2-phenylpyridine) iridium [Ir(ppy)3]. The T1 energy of Bebq2 was estimated to be 2.26 eV from the onset of the 573 nm 0–0 vibronic emission band. The energy transfer mechanism from Ir(ppy)3 to the T1 state of Bebq2 is discussed.  相似文献   

10.
The multiphase equilibration technique for the determination of the equilibrium angles that develop at the interphase boundaries of a solid–liquid–vapor system, has been used to calculate the surface and interfacial energies in polycrystalline CeO2 and CeO2/Cu system in argon atmosphere at the temperature range 1473–1773 K. Linear temperature functions were obtained by extrapolation, for the surface energy γsv (J/m2) = 2.465–0.563 × 10−3 T and the grain-boundary energy γss (J/m2) = 1.687–0.391 × 10−3 T of the ceramic, as well as for the interfacial energy γsl (J/m2) = 2.623–1.389 × 10−3(T −1356 K) of the CeO2/Cu system. Grain-boundary grooving studied on polished surfaces of CeO2 annealed in argon atmosphere at the same temperature range has shown that surface diffusion was the dominant mechanism for the mass transport. The surface diffusion coefficient can be expressed according to the equation Ds (m2/s) = 3.82 × 10−4 exp(−308,250/RT).  相似文献   

11.
Perovskite-type oxides BaCe0.90Sm0.10O3−δ (BCS) and BaCe0.80Gd0.10Sm0.10O3−δ (BCGS) were synthesized by the sol–gel method and characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Using the sintered samples as solid electrolytes and silver–palladium alloy as electrodes, ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in a solid-state proton-conducting cell reactor. The maximum rate of production of ammonia was 5.82×10−9 mol s−1 cm−2.  相似文献   

12.
Crystal growth, thermal and optical characteristics of LiNd(WO4)2 crystal have been investigated. The LiNd(WO4)2 crystal up to Ø15 × 32 mm3 has been grown by Czochralski technique. The hardness is about 5.0 Mohs’ scale. The specific heat at 50 °C is 0.42 J g−1 K−1. The thermal expansion coefficient for c- and a- axes is 1.107 × 10−5 and 2.104 × 10−5 K−1, respectively. The absorption and fluorescence spectra and the fluorescence decay curve of LiNd(WO4)2 crystal were measured at room temperature. Some spectroscopic parameters such as the intensity parameters, the spontaneous transition probabilities, the fluorescence branching ratios, the radiative lifetimes and emission cross sections were estimated.  相似文献   

13.
J.L. Cui  H.F. Xue  W.J. Xiu 《Materials Letters》2006,60(29-30):3669-3672
The p-type pseudo-binary AgxBi0.5Sb1.5−xTe3 (x = 0.05–0.4) alloys were prepared by cold pressing. The thermal conductivities (κ) were calculated from the values of heat capacities, densities and thermal diffusivities measured, and range approximately from 0.66 to 0.56 (W K− 1 m− 1) for the AgxBi0.5Sb1.5−xTe3 alloy with molar fraction x being 0.4. Combining with the electrical properties obtained in the previous study, the maximum dimensionless figure of merit ZT of 1.1 was obtained at the temperature of 558 K.  相似文献   

14.
High quality Tl2Ba2CaCu2O8 (Tl-2212) superconducting thin films are prepared on both sides of 2 in. LaAlO3(0 0 1) substrates by off-axis magnetron sputtering and post-annealing process. XRD measurements show that these films possess pure Tl-2212 phase with C-axis perpendicular to the substrate surface. The thickness unhomogeneity of the whole film on the 2 in. wafer is less than 5%. The superconducting transition temperatures Tcs of the films are around 105 K. At zero applied magnetic field, the critical current densities Jcs of the films on both sides of the wafer were measured to be above 2 × 106 A/cm2 at 77 K. The microwave surface resistance Rs of film was as low as 350 μΩ at 10 GHz and 77 K. In order to test the suitability of Tl-2212 thin films for passive microwave devices, 3-pole bandpass filters have been fabricated from double-sided Tl-2212 films on LaAlO3 substrates.  相似文献   

15.
(Ba0.32Sr0.68)5Nb4O15 crystal with sizes of Ø 17 × 35 mm was grown successfully by Czochralski technique method. The thermal anisotropy was discussed. The principal coefficients of thermal expansion along (100), (010), (001) directions were precisely measured to be 1.308 × 10− 5, 1.288 × 10− 5, 1.478 × 10− 5 K− 1, respectively. Its optical transparency range has been measured and found to span from 323 to 5500 nm. The bands present in the IR spectra were identified and assigned to the corresponding vibration modes of NbO6 anions.  相似文献   

16.
The physicochemical properties of V-doped indium titanates (In2Ti1−xVxO5+δ, 0.0 ≤ x ≤ 0.2) were investigated by using XPS, powder XRD, UV–vis, SEM and luminescence spectroscopy techniques. The Rietveld refinement of XRD data revealed that even though the V-containing samples were isostructural with In2TiO5 (orthorhombic space group Pnma), a systematic x-dependent variation was noticeable in the Ti–O bond lengths in [TiO6] octahedral units, cell parameters and in the value of δ. XPS results confirmed the coexistence of V5+ and V4+ states, leading thereby to an enhancement in oxygen non-stoichiometry in the doped samples. A loading-dependent progressive shift from 400 to 750 nm was also observed in the onset of the absorption edge, indicating a significant narrowing of the band gap. Furthermore, the samples with higher V-content were comprised of the grain clusters having larger size and an irregular shape. The UV–vis, photoluminescence and thermoluminescence studies indicate that the doping-induced lattice defects may give rise to certain closely spaced acceptor/donor energy levels in between the band gap of host matrix. The indium titanates are found to serve as stable photocatalysts for water splitting under visible light, where oxygen was the major reaction product. The role of microstructural and morphological properties in the photocatalytic activity is discussed.  相似文献   

17.
We have taken advantage of congruent melting behavior of the nonlinear rare-earth oxoborate Ca4REO(BO3)3 family to perfect a process of collective fabrication of self-frequency doubling microchip laser based on Nd:GdCOB (Ca4Gd1−xNdxO(BO3)3) crystals. The process goes from Czochralski boule to 1 × 3 mm2 chips perfectly oriented (better than 0.1°) to the phase matching direction (θ=90°, φ=46°) in the XY principal plane, with dielectric mirrors directly deposited on both faces of the chips. 20 mW of self-frequency doubling output power at 530 nm was performed under 800 mW of diode laser as incident pump power at 812 nm. In addition, new compositions from the solid solution Ca4Gd1−xYxO(BO3)3 (Gd1−xYxCOB) (x=0.13, 0.16, 0.44) have been grown by the Czochralski pulling method, in order to achieve noncritical phase matching (NCPM) second harmonic generation of 4F3/2 → 4I9/2 Nd3+ doped laser hosts. Three types of laser wavelengths have been chosen: Nd:YAP (YAlO3) at 930 nm, Nd:YAG (Y3Al5O12) at 946 nm, and Nd:ASL (NdySr1−x LaxyMgx Al12−xO19) at 900 nm. Angular acceptance measurements of these three types of compositions present very large values, compared to pure GdCOB or YCOB oriented in critical phase matching configurations.  相似文献   

18.
Yong Hwan Park 《Thin solid films》2007,515(12):5084-5089
The synthesis and photophysical study of efficient phosphorescent heteroleptic tris-cyclometalated iridium(III) complexes having two different (C^N) ligands are reported. In order to improve the luminescence efficiency by avoiding triplet-triplet (T-T) annihilation, new heteroleptic tris-cyclometalated iridium complexes, Ir(ppy)2(dpq), Ir(ppy)2(dpq-3-F) and Ir(ppy)2(dpq-CF3), are designed and prepared where ppy, dpq, dpq-3-F and dpq-CF3 represent 2-phenylpyridine, 2,4-diphenylquinoline, 2-(3-fluorophenyl)-4-phenylquinoline, and 4-phenyl-2-(4-(trifluoromethyl)phenyl)quinoline, respectively. Ppy ligands and dpq derivatives can act as a source of energy supply. When new heteroleptic tris-cyclometalated iridium complex, Ir(ppy)2(dpq-3-F) is placed in the lowest excited state, the excitation energy is neither quenched nor deactivated but quickly intermolecularly transferred from two ppy ligands to one luminescent dpq-3-F ligand. Such transfer can occur because the triplet energy level of Ir(ppy)3 is higher than that of Ir(dpq-3-F)3 and because Ir(dpq-3-F)3 was known to have a shorter lifetime than that of Ir(ppy)3. As a result, Ir(ppy)2(dpq-3-F) shows strong emission band at 620 nm from dpq-3-F ligand in the end. Thus it allows more reddish luminescent color and improves the luminescence by the decrease of quenching or energy deactivation by decreasing the number of the luminescent ligand. To analyze luminescent mechanism, we calculated these complexes theoretically by using computational method.  相似文献   

19.
Uniform Al2O3 films were deposited on silicon substrates by the sol–gel process from stable coating solutions. The technological procedure includes spin coating deposition and investigating the influence of the annealing temperature on the dielectric properties. The layers were studied by Fourier transform infrared spectroscopy and Scanning Electron Spectroscopy. The electrical measurements have been carried out on metal–insulator–semiconductor (MIS) structures. The C–V curves show a negative fixed charge at the interface and density of the interface state, Dit, 3.7 × 1011 eV− 1cm− 2 for annealing temperature at 750 °C.  相似文献   

20.
Ji Hyun Seo 《Thin solid films》2009,517(5):1807-1861
The blue-green organic light-emitting diodes based on heteroleptic tris-cyclometalated iridium(III) complexes containing the F2-ppy (2,4-difluorophenylpyridine) and ppy (2-phenylpyridine) ligands were fabricated. Ir(ppy)3 has been known to have a high phosphorescence efficiency in electroluminescence owing to its strong metal-to-ligand-charge transfer (MLCT) excited state, whereas the luminous efficiency of Ir(F2-ppy)3 was found to be low due to weak MLCT. Herein, we report two heteroleptic phosphorescent blue-green emitters, Ir(ppy)2(F2-ppy) and Ir(ppy)(F2-ppy)2, that exhibit emission peaks at 502 nm and 495 nm, respectively. The maximum luminous efficiencies of the devices with Ir(ppy)2(F2-ppy) and Ir(ppy)(F2-ppy)2 were 8.93 cd/A and 13.80 cd/A, respectively. The quantum efficiency of the device containing Ir(ppy)(F2-ppy)2 was 3.63% at J = 10 mA/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号